1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
|
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% RRRR EEEEE SSSSS AAA M M PPPP L EEEEE %
% R R E SS A A MM MM P P L E %
% RRRR EEE SSS AAAAA M M M PPPP L EEE %
% R R E SS A A M M P L E %
% R R EEEEE SSSSS A A M M P LLLLL EEEEE %
% %
% %
% MagickCore Pixel Resampling Methods %
% %
% Software Design %
% Cristy %
% Anthony Thyssen %
% August 2007 %
% %
% %
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/artifact.h"
#include "magick/color-private.h"
#include "magick/cache.h"
#include "magick/draw.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/log.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/pixel.h"
#include "magick/pixel-private.h"
#include "magick/quantum.h"
#include "magick/random_.h"
#include "magick/resample.h"
#include "magick/resize.h"
#include "magick/resize-private.h"
#include "magick/resource_.h"
#include "magick/transform.h"
#include "magick/signature-private.h"
#include "magick/token.h"
#include "magick/utility.h"
#include "magick/option.h"
/*
EWA Resampling Options
*/
/* select ONE resampling method */
#define EWA 1 /* Normal EWA handling - raw or clamped */
/* if 0 then use "High Quality EWA" */
#define EWA_CLAMP 1 /* EWA Clamping from Nicolas Robidoux */
#define FILTER_LUT 1 /* Use a LUT rather then direct filter calls */
/* output debugging information */
#define DEBUG_ELLIPSE 0 /* output ellipse info for debug */
#define DEBUG_HIT_MISS 0 /* output hit/miss pixels (as gnuplot commands) */
#define DEBUG_NO_PIXEL_HIT 0 /* Make pixels that fail to hit anything - RED */
#if ! FILTER_DIRECT
#define WLUT_WIDTH 1024 /* size of the filter cache */
#endif
/*
Typedef declarations.
*/
struct _ResampleFilter
{
CacheView
*view;
Image
*image;
ExceptionInfo
*exception;
MagickBooleanType
debug;
/* Information about image being resampled */
ssize_t
image_area;
InterpolatePixelMethod
interpolate;
VirtualPixelMethod
virtual_pixel;
FilterTypes
filter;
/* processing settings needed */
MagickBooleanType
limit_reached,
do_interpolate,
average_defined;
MagickPixelPacket
average_pixel;
/* current ellipitical area being resampled around center point */
double
A, B, C,
Vlimit, Ulimit, Uwidth, slope;
#if FILTER_LUT
/* LUT of weights for filtered average in elliptical area */
double
filter_lut[WLUT_WIDTH];
#else
/* Use a Direct call to the filter functions */
ResizeFilter
*filter_def;
double
F;
#endif
/* the practical working support of the filter */
double
support;
size_t
signature;
};
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A c q u i r e R e s a m p l e I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireResampleFilter() initializes the information resample needs do to a
% scaled lookup of a color from an image, using area sampling.
%
% The algorithm is based on a Elliptical Weighted Average, where the pixels
% found in a large elliptical area is averaged together according to a
% weighting (filter) function. For more details see "Fundamentals of Texture
% Mapping and Image Warping" a master's thesis by Paul.S.Heckbert, June 17,
% 1989. Available for free from, http://www.cs.cmu.edu/~ph/
%
% As EWA resampling (or any sort of resampling) can require a lot of
% calculations to produce a distorted scaling of the source image for each
% output pixel, the ResampleFilter structure generated holds that information
% between individual image resampling.
%
% This function will make the appropriate AcquireVirtualCacheView() calls
% to view the image, calling functions do not need to open a cache view.
%
% Usage Example...
% resample_filter=AcquireResampleFilter(image,exception);
% SetResampleFilter(resample_filter, GaussianFilter, 1.0);
% for (y=0; y < (ssize_t) image->rows; y++) {
% for (x=0; x < (ssize_t) image->columns; x++) {
% u= ....; v= ....;
% ScaleResampleFilter(resample_filter, ... scaling vectors ...);
% (void) ResamplePixelColor(resample_filter,u,v,&pixel);
% ... assign resampled pixel value ...
% }
% }
% DestroyResampleFilter(resample_filter);
%
% The format of the AcquireResampleFilter method is:
%
% ResampleFilter *AcquireResampleFilter(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ResampleFilter *AcquireResampleFilter(const Image *image,
ExceptionInfo *exception)
{
ResampleFilter
*resample_filter;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
resample_filter=(ResampleFilter *) AcquireQuantumMemory(1,
sizeof(*resample_filter));
if (resample_filter == (ResampleFilter *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) memset(resample_filter,0,sizeof(*resample_filter));
resample_filter->exception=exception;
resample_filter->image=ReferenceImage((Image *) image);
resample_filter->view=AcquireVirtualCacheView(resample_filter->image,exception);
resample_filter->debug=IsEventLogging();
resample_filter->signature=MagickCoreSignature;
resample_filter->image_area=(ssize_t) (image->columns*image->rows);
resample_filter->average_defined = MagickFalse;
/* initialise the resampling filter settings */
SetResampleFilter(resample_filter, image->filter, image->blur);
(void) SetResampleFilterInterpolateMethod(resample_filter,
image->interpolate);
(void) SetResampleFilterVirtualPixelMethod(resample_filter,
GetImageVirtualPixelMethod(image));
return(resample_filter);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e s t r o y R e s a m p l e I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyResampleFilter() finalizes and cleans up the resampling
% resample_filter as returned by AcquireResampleFilter(), freeing any memory
% or other information as needed.
%
% The format of the DestroyResampleFilter method is:
%
% ResampleFilter *DestroyResampleFilter(ResampleFilter *resample_filter)
%
% A description of each parameter follows:
%
% o resample_filter: resampling information structure
%
*/
MagickExport ResampleFilter *DestroyResampleFilter(
ResampleFilter *resample_filter)
{
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickCoreSignature);
assert(resample_filter->image != (Image *) NULL);
if (resample_filter->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
resample_filter->image->filename);
resample_filter->view=DestroyCacheView(resample_filter->view);
resample_filter->image=DestroyImage(resample_filter->image);
#if ! FILTER_LUT
resample_filter->filter_def=DestroyResizeFilter(resample_filter->filter_def);
#endif
resample_filter->signature=(~MagickCoreSignature);
resample_filter=(ResampleFilter *) RelinquishMagickMemory(resample_filter);
return(resample_filter);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e s a m p l e P i x e l C o l o r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ResamplePixelColor() samples the pixel values surrounding the location
% given using an elliptical weighted average, at the scale previously
% calculated, and in the most efficent manner possible for the
% VirtualPixelMethod setting.
%
% The format of the ResamplePixelColor method is:
%
% MagickBooleanType ResamplePixelColor(ResampleFilter *resample_filter,
% const double u0,const double v0,MagickPixelPacket *pixel)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o u0,v0: A double representing the center of the area to resample,
% The distortion transformed transformed x,y coordinate.
%
% o pixel: the resampled pixel is returned here.
%
*/
MagickExport MagickBooleanType ResamplePixelColor(
ResampleFilter *resample_filter,const double u0,const double v0,
MagickPixelPacket *pixel)
{
MagickBooleanType
status;
ssize_t u,v, v1, v2, uw, hit;
double u1;
double U,V,Q,DQ,DDQ;
double divisor_c,divisor_m;
double weight;
const PixelPacket *pixels;
const IndexPacket *indexes;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickCoreSignature);
status=MagickTrue;
/* GetMagickPixelPacket(resample_filter->image,pixel); */
if ( resample_filter->do_interpolate ) {
status=InterpolateMagickPixelPacket(resample_filter->image,
resample_filter->view,resample_filter->interpolate,u0,v0,pixel,
resample_filter->exception);
return(status);
}
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "u0=%lf; v0=%lf;\n", u0, v0);
#endif
/*
Does resample area Miss the image Proper?
If and that area a simple solid color - then simply return that color!
This saves a lot of calculation when resampling outside the bounds of
the source image.
However it probably should be expanded to image bounds plus the filters
scaled support size.
*/
hit = 0;
switch ( resample_filter->virtual_pixel ) {
case BackgroundVirtualPixelMethod:
case ConstantVirtualPixelMethod:
case TransparentVirtualPixelMethod:
case BlackVirtualPixelMethod:
case GrayVirtualPixelMethod:
case WhiteVirtualPixelMethod:
case MaskVirtualPixelMethod:
if ( resample_filter->limit_reached
|| u0 + resample_filter->Ulimit < 0.0
|| u0 - resample_filter->Ulimit > (double) resample_filter->image->columns-1.0
|| v0 + resample_filter->Vlimit < 0.0
|| v0 - resample_filter->Vlimit > (double) resample_filter->image->rows-1.0
)
hit++;
break;
case UndefinedVirtualPixelMethod:
case EdgeVirtualPixelMethod:
if ( ( u0 + resample_filter->Ulimit < 0.0 && v0 + resample_filter->Vlimit < 0.0 )
|| ( u0 + resample_filter->Ulimit < 0.0
&& v0 - resample_filter->Vlimit > (double) resample_filter->image->rows-1.0 )
|| ( u0 - resample_filter->Ulimit > (double) resample_filter->image->columns-1.0
&& v0 + resample_filter->Vlimit < 0.0 )
|| ( u0 - resample_filter->Ulimit > (double) resample_filter->image->columns-1.0
&& v0 - resample_filter->Vlimit > (double) resample_filter->image->rows-1.0 )
)
hit++;
break;
case HorizontalTileVirtualPixelMethod:
if ( v0 + resample_filter->Vlimit < 0.0
|| v0 - resample_filter->Vlimit > (double) resample_filter->image->rows-1.0
)
hit++; /* outside the horizontally tiled images. */
break;
case VerticalTileVirtualPixelMethod:
if ( u0 + resample_filter->Ulimit < 0.0
|| u0 - resample_filter->Ulimit > (double) resample_filter->image->columns-1.0
)
hit++; /* outside the vertically tiled images. */
break;
case DitherVirtualPixelMethod:
if ( ( u0 + resample_filter->Ulimit < -32.0 && v0 + resample_filter->Vlimit < -32.0 )
|| ( u0 + resample_filter->Ulimit < -32.0
&& v0 - resample_filter->Vlimit > (double) resample_filter->image->rows+31.0 )
|| ( u0 - resample_filter->Ulimit > (double) resample_filter->image->columns+31.0
&& v0 + resample_filter->Vlimit < -32.0 )
|| ( u0 - resample_filter->Ulimit > (double) resample_filter->image->columns+31.0
&& v0 - resample_filter->Vlimit > (double) resample_filter->image->rows+31.0 )
)
hit++;
break;
case TileVirtualPixelMethod:
case MirrorVirtualPixelMethod:
case RandomVirtualPixelMethod:
case HorizontalTileEdgeVirtualPixelMethod:
case VerticalTileEdgeVirtualPixelMethod:
case CheckerTileVirtualPixelMethod:
/* resampling of area is always needed - no VP limits */
break;
}
if ( hit ) {
/* The area being resampled is simply a solid color
* just return a single lookup color.
*
* Should this return the users requested interpolated color?
*/
status=InterpolateMagickPixelPacket(resample_filter->image,
resample_filter->view,IntegerInterpolatePixel,u0,v0,pixel,
resample_filter->exception);
return(status);
}
/*
When Scaling limits reached, return an 'averaged' result.
*/
if ( resample_filter->limit_reached ) {
switch ( resample_filter->virtual_pixel ) {
/* This is always handled by the above, so no need.
case BackgroundVirtualPixelMethod:
case ConstantVirtualPixelMethod:
case TransparentVirtualPixelMethod:
case GrayVirtualPixelMethod,
case WhiteVirtualPixelMethod
case MaskVirtualPixelMethod:
*/
case UndefinedVirtualPixelMethod:
case EdgeVirtualPixelMethod:
case DitherVirtualPixelMethod:
case HorizontalTileEdgeVirtualPixelMethod:
case VerticalTileEdgeVirtualPixelMethod:
/* We need an average edge pixel, from the correct edge!
How should I calculate an average edge color?
Just returning an averaged neighbourhood,
works well in general, but falls down for TileEdge methods.
This needs to be done properly!!!!!!
*/
status=InterpolateMagickPixelPacket(resample_filter->image,
resample_filter->view,AverageInterpolatePixel,u0,v0,pixel,
resample_filter->exception);
break;
case HorizontalTileVirtualPixelMethod:
case VerticalTileVirtualPixelMethod:
/* just return the background pixel - Is there a better way? */
status=InterpolateMagickPixelPacket(resample_filter->image,
resample_filter->view,IntegerInterpolatePixel,-1.0,-1.0,pixel,
resample_filter->exception);
break;
case TileVirtualPixelMethod:
case MirrorVirtualPixelMethod:
case RandomVirtualPixelMethod:
case CheckerTileVirtualPixelMethod:
default:
/* generate a average color of the WHOLE image */
if ( resample_filter->average_defined == MagickFalse ) {
Image
*average_image;
CacheView
*average_view;
GetMagickPixelPacket(resample_filter->image,(MagickPixelPacket *)
&resample_filter->average_pixel);
resample_filter->average_defined=MagickTrue;
/* Try to get an averaged pixel color of whole image */
average_image=ResizeImage(resample_filter->image,1,1,BoxFilter,1.0,
resample_filter->exception);
if (average_image == (Image *) NULL)
{
*pixel=resample_filter->average_pixel; /* FAILED */
break;
}
average_view=AcquireVirtualCacheView(average_image,
&average_image->exception);
pixels=(PixelPacket *)GetCacheViewVirtualPixels(average_view,0,0,1,1,
resample_filter->exception);
if (pixels == (const PixelPacket *) NULL) {
average_view=DestroyCacheView(average_view);
average_image=DestroyImage(average_image);
*pixel=resample_filter->average_pixel; /* FAILED */
break;
}
indexes=(IndexPacket *) GetCacheViewAuthenticIndexQueue(average_view);
SetMagickPixelPacket(resample_filter->image,pixels,indexes,
&(resample_filter->average_pixel));
average_view=DestroyCacheView(average_view);
average_image=DestroyImage(average_image);
if ( resample_filter->virtual_pixel == CheckerTileVirtualPixelMethod )
{
/* CheckerTile is a alpha blend of the image's average pixel
color and the current background color */
/* image's average pixel color */
weight = QuantumScale*((MagickRealType)(QuantumRange-
resample_filter->average_pixel.opacity));
resample_filter->average_pixel.red *= weight;
resample_filter->average_pixel.green *= weight;
resample_filter->average_pixel.blue *= weight;
divisor_c = weight;
/* background color */
weight = QuantumScale*((MagickRealType)(QuantumRange-
resample_filter->image->background_color.opacity));
resample_filter->average_pixel.red +=
weight*resample_filter->image->background_color.red;
resample_filter->average_pixel.green +=
weight*resample_filter->image->background_color.green;
resample_filter->average_pixel.blue +=
weight*resample_filter->image->background_color.blue;
resample_filter->average_pixel.opacity +=
resample_filter->image->background_color.opacity;
divisor_c += weight;
/* alpha blend */
resample_filter->average_pixel.red /= divisor_c;
resample_filter->average_pixel.green /= divisor_c;
resample_filter->average_pixel.blue /= divisor_c;
resample_filter->average_pixel.opacity /= 2; /* 50% blend */
}
}
*pixel=resample_filter->average_pixel;
break;
}
return(status);
}
/*
Initialize weighted average data collection
*/
hit = 0;
divisor_c = 0.0;
divisor_m = 0.0;
pixel->red = pixel->green = pixel->blue = 0.0;
if (pixel->matte != MagickFalse) pixel->opacity = 0.0;
if (pixel->colorspace == CMYKColorspace) pixel->index = 0.0;
/*
Determine the parellelogram bounding box fitted to the ellipse
centered at u0,v0. This area is bounding by the lines...
*/
v1 = (ssize_t)ceil(v0 - resample_filter->Vlimit); /* range of scan lines */
v2 = (ssize_t)floor(v0 + resample_filter->Vlimit);
/* scan line start and width accross the parallelogram */
u1 = u0 + (v1-v0)*resample_filter->slope - resample_filter->Uwidth;
uw = (ssize_t)(2.0*resample_filter->Uwidth)+1;
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "v1=%ld; v2=%ld\n", (long)v1, (long)v2);
(void) FormatLocaleFile(stderr, "u1=%ld; uw=%ld\n", (long)u1, (long)uw);
#else
# define DEBUG_HIT_MISS 0 /* only valid if DEBUG_ELLIPSE is enabled */
#endif
/*
Do weighted resampling of all pixels, within the scaled ellipse,
bound by a Parellelogram fitted to the ellipse.
*/
DDQ = 2*resample_filter->A;
for( v=v1; v<=v2; v++ ) {
#if DEBUG_HIT_MISS
long uu = ceil(u1); /* actual pixel location (for debug only) */
(void) FormatLocaleFile(stderr, "# scan line from pixel %ld, %ld\n", (long)uu, (long)v);
#endif
u = (ssize_t)ceil(u1); /* first pixel in scanline */
u1 += resample_filter->slope; /* start of next scan line */
/* location of this first pixel, relative to u0,v0 */
U = (double)u-u0;
V = (double)v-v0;
/* Q = ellipse quotent ( if Q<F then pixel is inside ellipse) */
Q = (resample_filter->A*U + resample_filter->B*V)*U + resample_filter->C*V*V;
DQ = resample_filter->A*(2.0*U+1) + resample_filter->B*V;
/* get the scanline of pixels for this v */
pixels=GetCacheViewVirtualPixels(resample_filter->view,u,v,(size_t) uw,
1,resample_filter->exception);
if (pixels == (const PixelPacket *) NULL)
return(MagickFalse);
indexes=GetCacheViewVirtualIndexQueue(resample_filter->view);
/* count up the weighted pixel colors */
for( u=0; u<uw; u++ ) {
weight = 0;
#if FILTER_LUT
/* Note that the ellipse has been pre-scaled so F = WLUT_WIDTH */
if ( Q < (double)WLUT_WIDTH ) {
weight = resample_filter->filter_lut[(int)Q];
#else
/* Note that the ellipse has been pre-scaled so F = support^2 */
if ( Q < (double)resample_filter->F ) {
weight = GetResizeFilterWeight(resample_filter->filter_def,
sqrt(Q)); /* a SquareRoot! Arrggghhhhh... */
#endif
if (pixel->matte != MagickFalse)
pixel->opacity += weight*pixels->opacity;
divisor_m += weight;
if (pixel->matte != MagickFalse)
weight *= QuantumScale*((MagickRealType)(QuantumRange-pixels->opacity));
pixel->red += weight*pixels->red;
pixel->green += weight*pixels->green;
pixel->blue += weight*pixels->blue;
if (pixel->colorspace == CMYKColorspace)
pixel->index += weight*(*indexes);
divisor_c += weight;
hit++;
#if DEBUG_HIT_MISS
/* mark the pixel according to hit/miss of the ellipse */
(void) FormatLocaleFile(stderr, "set arrow from %lf,%lf to %lf,%lf nohead ls 3\n",
(long)uu-.1,(double)v-.1,(long)uu+.1,(long)v+.1);
(void) FormatLocaleFile(stderr, "set arrow from %lf,%lf to %lf,%lf nohead ls 3\n",
(long)uu+.1,(double)v-.1,(long)uu-.1,(long)v+.1);
} else {
(void) FormatLocaleFile(stderr, "set arrow from %lf,%lf to %lf,%lf nohead ls 1\n",
(long)uu-.1,(double)v-.1,(long)uu+.1,(long)v+.1);
(void) FormatLocaleFile(stderr, "set arrow from %lf,%lf to %lf,%lf nohead ls 1\n",
(long)uu+.1,(double)v-.1,(long)uu-.1,(long)v+.1);
}
uu++;
#else
}
#endif
pixels++;
indexes++;
Q += DQ;
DQ += DDQ;
}
}
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "Hit=%ld; Total=%ld;\n", (long)hit, (long)uw*(v2-v1) );
#endif
/*
Result sanity check -- this should NOT happen
*/
if ( hit == 0 || divisor_m <= MagickEpsilon || divisor_c <= MagickEpsilon ) {
/* not enough pixels, or bad weighting in resampling,
resort to direct interpolation */
#if DEBUG_NO_PIXEL_HIT
pixel->opacity = pixel->red = pixel->green = pixel->blue = 0;
pixel->red = QuantumRange; /* show pixels for which EWA fails */
#else
status=InterpolateMagickPixelPacket(resample_filter->image,
resample_filter->view,resample_filter->interpolate,u0,v0,pixel,
resample_filter->exception);
#endif
return status;
}
/*
Finialize results of resampling
*/
divisor_m = 1.0/divisor_m;
if (pixel->matte != MagickFalse)
pixel->opacity = (MagickRealType) ClampToQuantum(divisor_m*pixel->opacity);
divisor_c = 1.0/divisor_c;
pixel->red = (MagickRealType) ClampToQuantum(divisor_c*pixel->red);
pixel->green = (MagickRealType) ClampToQuantum(divisor_c*pixel->green);
pixel->blue = (MagickRealType) ClampToQuantum(divisor_c*pixel->blue);
if (pixel->colorspace == CMYKColorspace)
pixel->index = (MagickRealType) ClampToQuantum(divisor_c*pixel->index);
return(MagickTrue);
}
#if EWA && EWA_CLAMP
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
- C l a m p U p A x e s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ClampUpAxes() function converts the input vectors into a major and
% minor axis unit vectors, and their magnitude. This allows us to
% ensure that the ellipse generated is never smaller than the unit
% circle and thus never too small for use in EWA resampling.
%
% This purely mathematical 'magic' was provided by Professor Nicolas
% Robidoux and his Masters student Chantal Racette.
%
% Reference: "We Recommend Singular Value Decomposition", David Austin
% http://www.ams.org/samplings/feature-column/fcarc-svd
%
% By generating major and minor axis vectors, we can actually use the
% ellipse in its "canonical form", by remapping the dx,dy of the
% sampled point into distances along the major and minor axis unit
% vectors.
%
% Reference: http://en.wikipedia.org/wiki/Ellipse#Canonical_form
*/
static inline void ClampUpAxes(const double dux,
const double dvx,
const double duy,
const double dvy,
double *major_mag,
double *minor_mag,
double *major_unit_x,
double *major_unit_y,
double *minor_unit_x,
double *minor_unit_y)
{
/*
* ClampUpAxes takes an input 2x2 matrix
*
* [ a b ] = [ dux duy ]
* [ c d ] = [ dvx dvy ]
*
* and computes from it the major and minor axis vectors [major_x,
* major_y] and [minor_x,minor_y] of the smallest ellipse containing
* both the unit disk and the ellipse which is the image of the unit
* disk by the linear transformation
*
* [ dux duy ] [S] = [s]
* [ dvx dvy ] [T] = [t]
*
* (The vector [S,T] is the difference between a position in output
* space and [X,Y]; the vector [s,t] is the difference between a
* position in input space and [x,y].)
*/
/*
* Output:
*
* major_mag is the half-length of the major axis of the "new"
* ellipse.
*
* minor_mag is the half-length of the minor axis of the "new"
* ellipse.
*
* major_unit_x is the x-coordinate of the major axis direction vector
* of both the "old" and "new" ellipses.
*
* major_unit_y is the y-coordinate of the major axis direction vector.
*
* minor_unit_x is the x-coordinate of the minor axis direction vector.
*
* minor_unit_y is the y-coordinate of the minor axis direction vector.
*
* Unit vectors are useful for computing projections, in particular,
* to compute the distance between a point in output space and the
* center of a unit disk in output space, using the position of the
* corresponding point [s,t] in input space. Following the clamping,
* the square of this distance is
*
* ( ( s * major_unit_x + t * major_unit_y ) / major_mag )^2
* +
* ( ( s * minor_unit_x + t * minor_unit_y ) / minor_mag )^2
*
* If such distances will be computed for many [s,t]'s, it makes
* sense to actually compute the reciprocal of major_mag and
* minor_mag and multiply them by the above unit lengths.
*
* Now, if you want to modify the input pair of tangent vectors so
* that it defines the modified ellipse, all you have to do is set
*
* newdux = major_mag * major_unit_x
* newdvx = major_mag * major_unit_y
* newduy = minor_mag * minor_unit_x = minor_mag * -major_unit_y
* newdvy = minor_mag * minor_unit_y = minor_mag * major_unit_x
*
* and use these tangent vectors as if they were the original ones.
* Usually, this is a drastic change in the tangent vectors even if
* the singular values are not clamped; for example, the minor axis
* vector always points in a direction which is 90 degrees
* counterclockwise from the direction of the major axis vector.
*/
/*
* Discussion:
*
* GOAL: Fix things so that the pullback, in input space, of a disk
* of radius r in output space is an ellipse which contains, at
* least, a disc of radius r. (Make this hold for any r>0.)
*
* ESSENCE OF THE METHOD: Compute the product of the first two
* factors of an SVD of the linear transformation defining the
* ellipse and make sure that both its columns have norm at least 1.
* Because rotations and reflexions map disks to themselves, it is
* not necessary to compute the third (rightmost) factor of the SVD.
*
* DETAILS: Find the singular values and (unit) left singular
* vectors of Jinv, clampling up the singular values to 1, and
* multiply the unit left singular vectors by the new singular
* values in order to get the minor and major ellipse axis vectors.
*
* Image resampling context:
*
* The Jacobian matrix of the transformation at the output point
* under consideration is defined as follows:
*
* Consider the transformation (x,y) -> (X,Y) from input locations
* to output locations. (Anthony Thyssen, elsewhere in resample.c,
* uses the notation (u,v) -> (x,y).)
*
* The Jacobian matrix of the transformation at (x,y) is equal to
*
* J = [ A, B ] = [ dX/dx, dX/dy ]
* [ C, D ] [ dY/dx, dY/dy ]
*
* that is, the vector [A,C] is the tangent vector corresponding to
* input changes in the horizontal direction, and the vector [B,D]
* is the tangent vector corresponding to input changes in the
* vertical direction.
*
* In the context of resampling, it is natural to use the inverse
* Jacobian matrix Jinv because resampling is generally performed by
* pulling pixel locations in the output image back to locations in
* the input image. Jinv is
*
* Jinv = [ a, b ] = [ dx/dX, dx/dY ]
* [ c, d ] [ dy/dX, dy/dY ]
*
* Note: Jinv can be computed from J with the following matrix
* formula:
*
* Jinv = 1/(A*D-B*C) [ D, -B ]
* [ -C, A ]
*
* What we do is modify Jinv so that it generates an ellipse which
* is as close as possible to the original but which contains the
* unit disk. This can be accomplished as follows:
*
* Let
*
* Jinv = U Sigma V^T
*
* be an SVD decomposition of Jinv. (The SVD is not unique, but the
* final ellipse does not depend on the particular SVD.)
*
* We could clamp up the entries of the diagonal matrix Sigma so
* that they are at least 1, and then set
*
* Jinv = U newSigma V^T.
*
* However, we do not need to compute V for the following reason:
* V^T is an orthogonal matrix (that is, it represents a combination
* of rotations and reflexions) so that it maps the unit circle to
* itself. For this reason, the exact value of V does not affect the
* final ellipse, and we can choose V to be the identity
* matrix. This gives
*
* Jinv = U newSigma.
*
* In the end, we return the two diagonal entries of newSigma
* together with the two columns of U.
*/
/*
* ClampUpAxes was written by Nicolas Robidoux and Chantal Racette
* of Laurentian University with insightful suggestions from Anthony
* Thyssen and funding from the National Science and Engineering
* Research Council of Canada. It is distinguished from its
* predecessors by its efficient handling of degenerate cases.
*
* The idea of clamping up the EWA ellipse's major and minor axes so
* that the result contains the reconstruction kernel filter support
* is taken from Andreas Gustaffson's Masters thesis "Interactive
* Image Warping", Helsinki University of Technology, Faculty of
* Information Technology, 59 pages, 1993 (see Section 3.6).
*
* The use of the SVD to clamp up the singular values of the
* Jacobian matrix of the pullback transformation for EWA resampling
* is taken from the astrophysicist Craig DeForest. It is
* implemented in his PDL::Transform code (PDL = Perl Data
* Language).
*/
const double a = dux;
const double b = duy;
const double c = dvx;
const double d = dvy;
/*
* n is the matrix Jinv * transpose(Jinv). Eigenvalues of n are the
* squares of the singular values of Jinv.
*/
const double aa = a*a;
const double bb = b*b;
const double cc = c*c;
const double dd = d*d;
/*
* Eigenvectors of n are left singular vectors of Jinv.
*/
const double n11 = aa+bb;
const double n12 = a*c+b*d;
const double n21 = n12;
const double n22 = cc+dd;
const double det = a*d-b*c;
const double twice_det = det+det;
const double frobenius_squared = n11+n22;
const double discriminant =
(frobenius_squared+twice_det)*(frobenius_squared-twice_det);
/*
* In exact arithmetic, discriminant can't be negative. In floating
* point, it can, because of the bad conditioning of SVD
* decompositions done through the associated normal matrix.
*/
const double sqrt_discriminant =
sqrt(discriminant > 0.0 ? discriminant : 0.0);
/*
* s1 is the largest singular value of the inverse Jacobian
* matrix. In other words, its reciprocal is the smallest singular
* value of the Jacobian matrix itself.
* If s1 = 0, both singular values are 0, and any orthogonal pair of
* left and right factors produces a singular decomposition of Jinv.
*/
/*
* Initially, we only compute the squares of the singular values.
*/
const double s1s1 = 0.5*(frobenius_squared+sqrt_discriminant);
/*
* s2 the smallest singular value of the inverse Jacobian
* matrix. Its reciprocal is the largest singular value of the
* Jacobian matrix itself.
*/
const double s2s2 = 0.5*(frobenius_squared-sqrt_discriminant);
const double s1s1minusn11 = s1s1-n11;
const double s1s1minusn22 = s1s1-n22;
/*
* u1, the first column of the U factor of a singular decomposition
* of Jinv, is a (non-normalized) left singular vector corresponding
* to s1. It has entries u11 and u21. We compute u1 from the fact
* that it is an eigenvector of n corresponding to the eigenvalue
* s1^2.
*/
const double s1s1minusn11_squared = s1s1minusn11*s1s1minusn11;
const double s1s1minusn22_squared = s1s1minusn22*s1s1minusn22;
/*
* The following selects the largest row of n-s1^2 I as the one
* which is used to find the eigenvector. If both s1^2-n11 and
* s1^2-n22 are zero, n-s1^2 I is the zero matrix. In that case,
* any vector is an eigenvector; in addition, norm below is equal to
* zero, and, in exact arithmetic, this is the only case in which
* norm = 0. So, setting u1 to the simple but arbitrary vector [1,0]
* if norm = 0 safely takes care of all cases.
*/
const double temp_u11 =
( (s1s1minusn11_squared>=s1s1minusn22_squared) ? n12 : s1s1minusn22 );
const double temp_u21 =
( (s1s1minusn11_squared>=s1s1minusn22_squared) ? s1s1minusn11 : n21 );
const double norm = sqrt(temp_u11*temp_u11+temp_u21*temp_u21);
/*
* Finalize the entries of first left singular vector (associated
* with the largest singular value).
*/
const double u11 = ( (norm>0.0) ? temp_u11/norm : 1.0 );
const double u21 = ( (norm>0.0) ? temp_u21/norm : 0.0 );
/*
* Clamp the singular values up to 1.
*/
*major_mag = ( (s1s1<=1.0) ? 1.0 : sqrt(s1s1) );
*minor_mag = ( (s2s2<=1.0) ? 1.0 : sqrt(s2s2) );
/*
* Return the unit major and minor axis direction vectors.
*/
*major_unit_x = u11;
*major_unit_y = u21;
*minor_unit_x = -u21;
*minor_unit_y = u11;
}
#endif
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S c a l e R e s a m p l e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ScaleResampleFilter() does all the calculations needed to resample an image
% at a specific scale, defined by two scaling vectors. This not using
% a orthogonal scaling, but two distorted scaling vectors, to allow the
% generation of a angled ellipse.
%
% As only two deritive scaling vectors are used the center of the ellipse
% must be the center of the lookup. That is any curvature that the
% distortion may produce is discounted.
%
% The input vectors are produced by either finding the derivitives of the
% distortion function, or the partial derivitives from a distortion mapping.
% They do not need to be the orthogonal dx,dy scaling vectors, but can be
% calculated from other derivatives. For example you could use dr,da/r
% polar coordinate vector scaling vectors
%
% If u,v = DistortEquation(x,y) OR u = Fu(x,y); v = Fv(x,y)
% Then the scaling vectors are determined from the deritives...
% du/dx, dv/dx and du/dy, dv/dy
% If the resulting scaling vectors is othogonally aligned then...
% dv/dx = 0 and du/dy = 0
% Producing an othogonally alligned ellipse in source space for the area to
% be resampled.
%
% Note that scaling vectors are different to argument order. Argument order
% is the general order the deritives are extracted from the distortion
% equations, and not the scaling vectors. As such the middle two vaules
% may be swapped from what you expect. Caution is advised.
%
% WARNING: It is assumed that any SetResampleFilter() method call will
% always be performed before the ScaleResampleFilter() method, so that the
% size of the ellipse will match the support for the resampling filter being
% used.
%
% The format of the ScaleResampleFilter method is:
%
% void ScaleResampleFilter(const ResampleFilter *resample_filter,
% const double dux,const double duy,const double dvx,const double dvy)
%
% A description of each parameter follows:
%
% o resample_filter: the resampling resample_filterrmation defining the
% image being resampled
%
% o dux,duy,dvx,dvy:
% The deritives or scaling vectors defining the EWA ellipse.
% NOTE: watch the order, which is based on the order deritives
% are usally determined from distortion equations (see above).
% The middle two values may need to be swapped if you are thinking
% in terms of scaling vectors.
%
*/
MagickExport void ScaleResampleFilter(ResampleFilter *resample_filter,
const double dux,const double duy,const double dvx,const double dvy)
{
double A,B,C,F;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickCoreSignature);
resample_filter->limit_reached = MagickFalse;
/* A 'point' filter forces use of interpolation instead of area sampling */
if ( resample_filter->filter == PointFilter )
return; /* EWA turned off - nothing to do */
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "# -----\n" );
(void) FormatLocaleFile(stderr, "dux=%lf; dvx=%lf; duy=%lf; dvy=%lf;\n",
dux, dvx, duy, dvy);
#endif
/* Find Ellipse Coefficents such that
A*u^2 + B*u*v + C*v^2 = F
With u,v relative to point around which we are resampling.
And the given scaling dx,dy vectors in u,v space
du/dx,dv/dx and du/dy,dv/dy
*/
#if EWA
/* Direct conversion of derivatives into elliptical coefficients
However when magnifying images, the scaling vectors will be small
resulting in a ellipse that is too small to sample properly.
As such we need to clamp the major/minor axis to a minumum of 1.0
to prevent it getting too small.
*/
#if EWA_CLAMP
{ double major_mag,
minor_mag,
major_x,
major_y,
minor_x,
minor_y;
ClampUpAxes(dux,dvx,duy,dvy, &major_mag, &minor_mag,
&major_x, &major_y, &minor_x, &minor_y);
major_x *= major_mag; major_y *= major_mag;
minor_x *= minor_mag; minor_y *= minor_mag;
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "major_x=%lf; major_y=%lf; minor_x=%lf; minor_y=%lf;\n",
major_x, major_y, minor_x, minor_y);
#endif
A = major_y*major_y+minor_y*minor_y;
B = -2.0*(major_x*major_y+minor_x*minor_y);
C = major_x*major_x+minor_x*minor_x;
F = major_mag*minor_mag;
F *= F; /* square it */
}
#else /* raw unclamped EWA */
A = dvx*dvx+dvy*dvy;
B = -2.0*(dux*dvx+duy*dvy);
C = dux*dux+duy*duy;
F = dux*dvy-duy*dvx;
F *= F; /* square it */
#endif /* EWA_CLAMP */
#else /* HQ_EWA */
/*
This Paul Heckbert's "Higher Quality EWA" formula, from page 60 in his
thesis, which adds a unit circle to the elliptical area so as to do both
Reconstruction and Prefiltering of the pixels in the resampling. It also
means it is always likely to have at least 4 pixels within the area of the
ellipse, for weighted averaging. No scaling will result with F == 4.0 and
a circle of radius 2.0, and F smaller than this means magnification is
being used.
NOTE: This method produces a very blury result at near unity scale while
producing perfect results for strong minitification and magnifications.
However filter support is fixed to 2.0 (no good for Windowed Sinc filters)
*/
A = dvx*dvx+dvy*dvy+1;
B = -2.0*(dux*dvx+duy*dvy);
C = dux*dux+duy*duy+1;
F = A*C - B*B/4;
#endif
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "A=%lf; B=%lf; C=%lf; F=%lf\n", A,B,C,F);
/* Figure out the various information directly about the ellipse.
This information currently not needed at this time, but may be
needed later for better limit determination.
It is also good to have as a record for future debugging
*/
{ double alpha, beta, gamma, Major, Minor;
double Eccentricity, Ellipse_Area, Ellipse_Angle;
alpha = A+C;
beta = A-C;
gamma = sqrt(beta*beta + B*B );
if ( alpha - gamma <= MagickEpsilon )
Major= MagickMaximumValue;
else
Major= sqrt(2*F/(alpha - gamma));
Minor = sqrt(2*F/(alpha + gamma));
(void) FormatLocaleFile(stderr, "# Major=%lf; Minor=%lf\n", Major, Minor );
/* other information about ellipse include... */
Eccentricity = Major/Minor;
Ellipse_Area = MagickPI*Major*Minor;
Ellipse_Angle = atan2(B, A-C);
(void) FormatLocaleFile(stderr, "# Angle=%lf Area=%lf\n",
(double) RadiansToDegrees(Ellipse_Angle), Ellipse_Area);
}
#endif
/* If one or both of the scaling vectors is impossibly large
(producing a very large raw F value), we may as well not bother
doing any form of resampling since resampled area is very large.
In this case some alternative means of pixel sampling, such as
the average of the whole image is needed to get a reasonable
result. Calculate only as needed.
*/
if ( (4*A*C - B*B) > MagickMaximumValue ) {
resample_filter->limit_reached = MagickTrue;
return;
}
/* Scale ellipse to match the filters support
(that is, multiply F by the square of the support)
Simplier to just multiply it by the support twice!
*/
F *= resample_filter->support;
F *= resample_filter->support;
/* Orthogonal bounds of the ellipse */
resample_filter->Ulimit = sqrt(C*F/(A*C-0.25*B*B));
resample_filter->Vlimit = sqrt(A*F/(A*C-0.25*B*B));
/* Horizontally aligned parallelogram fitted to Ellipse */
resample_filter->Uwidth = sqrt(F/A); /* Half of the parallelogram width */
resample_filter->slope = -B/(2.0*A); /* Reciprocal slope of the parallelogram */
#if DEBUG_ELLIPSE
(void) FormatLocaleFile(stderr, "Ulimit=%lf; Vlimit=%lf; UWidth=%lf; Slope=%lf;\n",
resample_filter->Ulimit, resample_filter->Vlimit,
resample_filter->Uwidth, resample_filter->slope );
#endif
/* Check the absolute area of the parallelogram involved.
* This limit needs more work, as it is too slow for larger images
* with tiled views of the horizon.
*/
if ( (resample_filter->Uwidth * resample_filter->Vlimit)
> (4.0*resample_filter->image_area)) {
resample_filter->limit_reached = MagickTrue;
return;
}
/* Scale ellipse formula to directly index the Filter Lookup Table */
{ double scale;
#if FILTER_LUT
/* scale so that F = WLUT_WIDTH; -- hardcoded */
scale=(double) WLUT_WIDTH*PerceptibleReciprocal(F);
#else
/* scale so that F = resample_filter->F (support^2) */
scale=resample_filter->F*PerceptibleReciprocal(F);
#endif
resample_filter->A = A*scale;
resample_filter->B = B*scale;
resample_filter->C = C*scale;
}
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t R e s a m p l e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResampleFilter() set the resampling filter lookup table based on a
% specific filter. Note that the filter is used as a radial filter not as a
% two pass othogonally aligned resampling filter.
%
% The format of the SetResampleFilter method is:
%
% void SetResampleFilter(ResampleFilter *resample_filter,
% const FilterTypes filter,const double blur)
%
% A description of each parameter follows:
%
% o resample_filter: resampling resample_filterrmation structure
%
% o filter: the resize filter for elliptical weighting LUT
%
% o blur: filter blur factor (radial scaling) for elliptical weighting LUT
%
*/
MagickExport void SetResampleFilter(ResampleFilter *resample_filter,
const FilterTypes filter,const double blur)
{
ResizeFilter
*resize_filter;
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickCoreSignature);
resample_filter->do_interpolate = MagickFalse;
resample_filter->filter = filter;
/* Default cylindrical filter is a Cubic Keys filter */
if ( filter == UndefinedFilter )
resample_filter->filter = RobidouxFilter;
if ( resample_filter->filter == PointFilter ) {
resample_filter->do_interpolate = MagickTrue;
return; /* EWA turned off - nothing more to do */
}
resize_filter = AcquireResizeFilter(resample_filter->image,
resample_filter->filter,blur,MagickTrue,resample_filter->exception);
if (resize_filter == (ResizeFilter *) NULL) {
(void) ThrowMagickException(resample_filter->exception,GetMagickModule(),
ModuleError, "UnableToSetFilteringValue",
"Fall back to Interpolated 'Point' filter");
resample_filter->filter = PointFilter;
resample_filter->do_interpolate = MagickTrue;
return; /* EWA turned off - nothing more to do */
}
/* Get the practical working support for the filter,
* after any API call blur factors have been accoded for.
*/
#if EWA
resample_filter->support = GetResizeFilterSupport(resize_filter);
#else
resample_filter->support = 2.0; /* fixed support size for HQ-EWA */
#endif
#if FILTER_LUT
/* Fill the LUT with the weights from the selected filter function */
{ int
Q;
double
r_scale;
/* Scale radius so the filter LUT covers the full support range */
r_scale = resample_filter->support*sqrt(1.0/(double)WLUT_WIDTH);
for(Q=0; Q<WLUT_WIDTH; Q++)
resample_filter->filter_lut[Q] = (double)
GetResizeFilterWeight(resize_filter,sqrt((double)Q)*r_scale);
/* finished with the resize filter */
resize_filter = DestroyResizeFilter(resize_filter);
}
#else
/* save the filter and the scaled ellipse bounds needed for filter */
resample_filter->filter_def = resize_filter;
resample_filter->F = resample_filter->support*resample_filter->support;
#endif
/*
Adjust the scaling of the default unit circle
This assumes that any real scaling changes will always
take place AFTER the filter method has been initialized.
*/
ScaleResampleFilter(resample_filter, 1.0, 0.0, 0.0, 1.0);
#if 0
/*
This is old code kept as a reference only. Basically it generates
a Gaussian bell curve, with sigma = 0.5 if the support is 2.0
Create Normal Gaussian 2D Filter Weighted Lookup Table.
A normal EWA guassual lookup would use exp(Q*ALPHA)
where Q = distance squared from 0.0 (center) to 1.0 (edge)
and ALPHA = -4.0*ln(2.0) ==> -2.77258872223978123767
The table is of length 1024, and equates to support radius of 2.0
thus needs to be scaled by ALPHA*4/1024 and any blur factor squared
The it comes from reference code provided by Fred Weinhaus.
*/
r_scale = -2.77258872223978123767/(WLUT_WIDTH*blur*blur);
for(Q=0; Q<WLUT_WIDTH; Q++)
resample_filter->filter_lut[Q] = exp((double)Q*r_scale);
resample_filter->support = WLUT_WIDTH;
#endif
#if FILTER_LUT
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp single
#endif
{
if (IsMagickTrue(GetImageArtifact(resample_filter->image,
"resample:verbose")) )
{
int
Q;
double
r_scale;
/* Debug output of the filter weighting LUT
Gnuplot the LUT data, the x scale index has been adjusted
plot [0:2][-.2:1] "lut.dat" with lines
The filter values should be normalized for comparision
*/
printf("#\n");
printf("# Resampling Filter LUT (%d values) for '%s' filter\n",
WLUT_WIDTH, CommandOptionToMnemonic(MagickFilterOptions,
resample_filter->filter) );
printf("#\n");
printf("# Note: values in table are using a squared radius lookup.\n");
printf("# As such its distribution is not uniform.\n");
printf("#\n");
printf("# The X value is the support distance for the Y weight\n");
printf("# so you can use gnuplot to plot this cylindrical filter\n");
printf("# plot [0:2][-.2:1] \"lut.dat\" with lines\n");
printf("#\n");
/* Scale radius so the filter LUT covers the full support range */
r_scale = resample_filter->support*sqrt(1.0/(double)WLUT_WIDTH);
for(Q=0; Q<WLUT_WIDTH; Q++)
printf("%8.*g %.*g\n",
GetMagickPrecision(),sqrt((double)Q)*r_scale,
GetMagickPrecision(),resample_filter->filter_lut[Q] );
printf("\n\n"); /* generate a 'break' in gnuplot if multiple outputs */
}
/* Output the above once only for each image, and each setting
(void) DeleteImageArtifact(resample_filter->image,"resample:verbose");
*/
}
#endif /* FILTER_LUT */
return;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t R e s a m p l e F i l t e r I n t e r p o l a t e M e t h o d %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResampleFilterInterpolateMethod() sets the resample filter interpolation
% method.
%
% The format of the SetResampleFilterInterpolateMethod method is:
%
% MagickBooleanType SetResampleFilterInterpolateMethod(
% ResampleFilter *resample_filter,const InterpolateMethod method)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o method: the interpolation method.
%
*/
MagickExport MagickBooleanType SetResampleFilterInterpolateMethod(
ResampleFilter *resample_filter,const InterpolatePixelMethod method)
{
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickCoreSignature);
assert(resample_filter->image != (Image *) NULL);
if (resample_filter->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
resample_filter->image->filename);
resample_filter->interpolate=method;
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t R e s a m p l e F i l t e r V i r t u a l P i x e l M e t h o d %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResampleFilterVirtualPixelMethod() changes the virtual pixel method
% associated with the specified resample filter.
%
% The format of the SetResampleFilterVirtualPixelMethod method is:
%
% MagickBooleanType SetResampleFilterVirtualPixelMethod(
% ResampleFilter *resample_filter,const VirtualPixelMethod method)
%
% A description of each parameter follows:
%
% o resample_filter: the resample filter.
%
% o method: the virtual pixel method.
%
*/
MagickExport MagickBooleanType SetResampleFilterVirtualPixelMethod(
ResampleFilter *resample_filter,const VirtualPixelMethod method)
{
assert(resample_filter != (ResampleFilter *) NULL);
assert(resample_filter->signature == MagickCoreSignature);
assert(resample_filter->image != (Image *) NULL);
if (resample_filter->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
resample_filter->image->filename);
resample_filter->virtual_pixel=method;
if (method != UndefinedVirtualPixelMethod)
(void) SetCacheViewVirtualPixelMethod(resample_filter->view,method);
return(MagickTrue);
}
|