1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% GGGG EEEEE M M %
% G E MM MM %
% G GG EEE M M M %
% G G E M M %
% GGGG EEEEE M M %
% %
% %
% Graphic Gems - Graphic Support Methods %
% %
% Software Design %
% Cristy %
% August 1996 %
% %
% %
% Copyright @ 1999 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/color-private.h"
#include "MagickCore/draw.h"
#include "MagickCore/gem.h"
#include "MagickCore/gem-private.h"
#include "MagickCore/image.h"
#include "MagickCore/image-private.h"
#include "MagickCore/log.h"
#include "MagickCore/memory_.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/random_.h"
#include "MagickCore/resize.h"
#include "MagickCore/transform.h"
#include "MagickCore/signature-private.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E x p a n d A f f i n e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ExpandAffine() computes the affine's expansion factor, i.e. the square root
% of the factor by which the affine transform affects area. In an affine
% transform composed of scaling, rotation, shearing, and translation, returns
% the amount of scaling.
%
% The format of the ExpandAffine method is:
%
% double ExpandAffine(const AffineMatrix *affine)
%
% A description of each parameter follows:
%
% o expansion: ExpandAffine returns the affine's expansion factor.
%
% o affine: A pointer the affine transform of type AffineMatrix.
%
*/
MagickExport double ExpandAffine(const AffineMatrix *affine)
{
assert(affine != (const AffineMatrix *) NULL);
return(sqrt(fabs(affine->sx*affine->sy-affine->rx*affine->ry)));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e n e r a t e D i f f e r e n t i a l N o i s e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GenerateDifferentialNoise() generates differential noise.
%
% The format of the GenerateDifferentialNoise method is:
%
% double GenerateDifferentialNoise(RandomInfo *random_info,
% const Quantum pixel,const NoiseType noise_type,const double attenuate)
%
% A description of each parameter follows:
%
% o random_info: the random info.
%
% o pixel: noise is relative to this pixel value.
%
% o noise_type: the type of noise.
%
% o attenuate: attenuate the noise.
%
*/
MagickPrivate double GenerateDifferentialNoise(RandomInfo *random_info,
const Quantum pixel,const NoiseType noise_type,const double attenuate)
{
#define SigmaUniform (attenuate*0.015625)
#define SigmaGaussian (attenuate*0.015625)
#define SigmaImpulse (attenuate*0.1)
#define SigmaLaplacian (attenuate*0.0390625)
#define SigmaMultiplicativeGaussian (attenuate*0.5)
#define SigmaPoisson (attenuate*12.5)
#define SigmaRandom (attenuate)
#define TauGaussian (attenuate*0.078125)
double
alpha,
beta,
noise,
sigma;
alpha=GetPseudoRandomValue(random_info);
switch (noise_type)
{
case UniformNoise:
default:
{
noise=(double) pixel+(double) QuantumRange*SigmaUniform*(alpha-0.5);
break;
}
case GaussianNoise:
{
double
gamma,
tau;
if (fabs(alpha) < MagickEpsilon)
alpha=1.0;
beta=GetPseudoRandomValue(random_info);
gamma=sqrt(-2.0*log(alpha));
sigma=gamma*cos((double) (2.0*MagickPI*beta));
tau=gamma*sin((double) (2.0*MagickPI*beta));
noise=(double) pixel+sqrt((double) pixel)*SigmaGaussian*sigma+
(double) QuantumRange*TauGaussian*tau;
break;
}
case ImpulseNoise:
{
if (alpha < (SigmaImpulse/2.0))
noise=0.0;
else
if (alpha >= (1.0-(SigmaImpulse/2.0)))
noise=(double) QuantumRange;
else
noise=(double) pixel;
break;
}
case LaplacianNoise:
{
if (alpha <= 0.5)
{
if (alpha <= MagickEpsilon)
noise=(double) (pixel-QuantumRange);
else
noise=(double) pixel+(double) QuantumRange*SigmaLaplacian*
log(2.0*alpha)+0.5;
break;
}
beta=1.0-alpha;
if (beta <= (0.5*MagickEpsilon))
noise=(double) (pixel+QuantumRange);
else
noise=(double) pixel-(double) QuantumRange*SigmaLaplacian*
log(2.0*beta)+0.5;
break;
}
case MultiplicativeGaussianNoise:
{
sigma=1.0;
if (alpha > MagickEpsilon)
sigma=sqrt(-2.0*log(alpha));
beta=GetPseudoRandomValue(random_info);
noise=(double) pixel+(double) pixel*SigmaMultiplicativeGaussian*sigma*
cos((double) (2.0*MagickPI*beta))/2.0;
break;
}
case PoissonNoise:
{
double
poisson;
ssize_t
i;
poisson=exp(-SigmaPoisson*QuantumScale*(double) pixel);
for (i=0; alpha > poisson; i++)
{
beta=GetPseudoRandomValue(random_info);
alpha*=beta;
}
noise=(double) QuantumRange*i*PerceptibleReciprocal(SigmaPoisson);
break;
}
case RandomNoise:
{
noise=(double) QuantumRange*SigmaRandom*alpha;
break;
}
}
return(noise);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t O p t i m a l K e r n e l W i d t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetOptimalKernelWidth() computes the optimal kernel radius for a convolution
% filter. Start with the minimum value of 3 pixels and walk out until we drop
% below the threshold of one pixel numerical accuracy.
%
% The format of the GetOptimalKernelWidth method is:
%
% size_t GetOptimalKernelWidth(const double radius,
% const double sigma)
%
% A description of each parameter follows:
%
% o width: GetOptimalKernelWidth returns the optimal width of a
% convolution kernel.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
*/
MagickPrivate size_t GetOptimalKernelWidth1D(const double radius,
const double sigma)
{
double
alpha,
beta,
gamma,
normalize,
value;
size_t
width;
ssize_t
i,
j;
if (IsEventLogging() != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
if (radius > MagickEpsilon)
return((size_t) (2.0*ceil(radius)+1.0));
gamma=fabs(sigma);
if (gamma <= MagickEpsilon)
return(3UL);
alpha=PerceptibleReciprocal(2.0*gamma*gamma);
beta=(double) PerceptibleReciprocal((double) MagickSQ2PI*gamma);
for (width=5; ; )
{
normalize=0.0;
j=(ssize_t) (width-1)/2;
for (i=(-j); i <= j; i++)
normalize+=exp(-((double) (i*i))*alpha)*beta;
value=exp(-((double) (j*j))*alpha)*beta/normalize;
if ((value < QuantumScale) || (value < MagickEpsilon))
break;
width+=2;
}
return((size_t) (width-2));
}
MagickPrivate size_t GetOptimalKernelWidth2D(const double radius,
const double sigma)
{
double
alpha,
beta,
gamma,
normalize,
value;
size_t
width;
ssize_t
j,
u,
v;
if (IsEventLogging() != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
if (radius > MagickEpsilon)
return((size_t) (2.0*ceil(radius)+1.0));
gamma=fabs(sigma);
if (gamma <= MagickEpsilon)
return(3UL);
alpha=PerceptibleReciprocal(2.0*gamma*gamma);
beta=(double) PerceptibleReciprocal((double) Magick2PI*gamma*gamma);
for (width=5; ; )
{
normalize=0.0;
j=(ssize_t) (width-1)/2;
for (v=(-j); v <= j; v++)
for (u=(-j); u <= j; u++)
normalize+=exp(-((double) (u*u+v*v))*alpha)*beta;
value=exp(-((double) (j*j))*alpha)*beta/normalize;
if ((value < QuantumScale) || (value < MagickEpsilon))
break;
width+=2;
}
return((size_t) (width-2));
}
MagickPrivate size_t GetOptimalKernelWidth(const double radius,
const double sigma)
{
return(GetOptimalKernelWidth1D(radius,sigma));
}
|