File: v0.4.rst

package info (click to toggle)
imbalanced-learn 0.12.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,160 kB
  • sloc: python: 17,221; sh: 481; makefile: 187; javascript: 50
file content (232 lines) | stat: -rw-r--r-- 8,625 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
.. _changes_0_4:

Version 0.4.2
=============

**October 21, 2018**

Changelog
---------

Bug fixes
.........

- Fix a bug in :class:`imblearn.over_sampling.SMOTENC` in which the the median
  of the standard deviation instead of half of the median of the standard
  deviation.
  By :user:`Guillaume Lemaitre <glemaitre>` in :issue:`491`.

- Raise an error when passing target  which is not supported, i.e. regression
  target or multilabel targets. Imbalanced-learn does not support this case.
  By :user:`Guillaume Lemaitre <glemaitre>` in :issue:`490`.

- Fix a bug in :class:`imblearn.over_sampling.SMOTENC` in which a sparse
  matrices were densify during ``inverse_transform``.
  By :user:`Guillaume Lemaitre <glemaitre>` in :issue:`495`.

- Fix a bug in :class:`imblearn.over_sampling.SMOTE_NC` in which a the tie
  breaking was wrongly sampling.
  By :user:`Guillaume Lemaitre <glemaitre>` in :issue:`497`.

Version 0.4
===========

**October 12, 2018**

.. warning::

    Version 0.4 is the last version of imbalanced-learn to support Python 2.7
    and Python 3.4. Imbalanced-learn 0.5 will require Python 3.5 or higher.

Highlights
----------

This release brings its set of new feature as well as some API changes to
strengthen the foundation of imbalanced-learn.

As new feature, 2 new modules :mod:`imblearn.keras` and
:mod:`imblearn.tensorflow` have been added in which imbalanced-learn samplers
can be used to generate balanced mini-batches.

The module :mod:`imblearn.ensemble` has been consolidated with new classifier:
:class:`imblearn.ensemble.BalancedRandomForestClassifier`,
:class:`imblearn.ensemble.EasyEnsembleClassifier`,
:class:`imblearn.ensemble.RUSBoostClassifier`.

Support for string has been added in
:class:`imblearn.over_sampling.RandomOverSampler` and
:class:`imblearn.under_sampling.RandomUnderSampler`. In addition, a new class
:class:`imblearn.over_sampling.SMOTENC` allows to generate sample with data
sets containing both continuous and categorical features.

The :class:`imblearn.over_sampling.SMOTE` has been simplified and break down
to 2 additional classes:
:class:`imblearn.over_sampling.SVMSMOTE` and
:class:`imblearn.over_sampling.BorderlineSMOTE`.

There is also some changes regarding the API:
the parameter ``sampling_strategy`` has been introduced to replace the
``ratio`` parameter. In addition, the ``return_indices`` argument has been
deprecated and all samplers will exposed a ``sample_indices_`` whenever this is
possible.

Changelog
---------

API
...

- Replace the parameter ``ratio`` by ``sampling_strategy``. :issue:`411` by
  :user:`Guillaume Lemaitre <glemaitre>`.

- Enable to use a ``float`` with binary classification for
  ``sampling_strategy``. :issue:`411` by :user:`Guillaume Lemaitre <glemaitre>`.

- Enable to use a ``list`` for the cleaning methods to specify the class to
  sample. :issue:`411` by :user:`Guillaume Lemaitre <glemaitre>`.

- Replace ``fit_sample`` by ``fit_resample``. An alias is still available for
  backward compatibility. In addition, ``sample`` has been removed to avoid
  resampling on different set of data.
  :issue:`462` by :user:`Guillaume Lemaitre <glemaitre>`.

New features
............

- Add a :mod:`keras` and :mod:`tensorflow` modules to create balanced
  mini-batches generator.
  :issue:`409` by :user:`Guillaume Lemaitre <glemaitre>`.

- Add :class:`imblearn.ensemble.EasyEnsembleClassifier` which create a bag of
  AdaBoost classifier trained on balanced bootstrap samples.
  :issue:`455` by :user:`Guillaume Lemaitre <glemaitre>`.

- Add :class:`imblearn.ensemble.BalancedRandomForestClassifier` which balanced
  each bootstrap provided to each tree of the forest.
  :issue:`459` by :user:`Guillaume Lemaitre <glemaitre>`.

- Add :class:`imblearn.ensemble.RUSBoostClassifier` which applied a random
  under-sampling stage before each boosting iteration of AdaBoost.
  :issue:`469` by :user:`Guillaume Lemaitre <glemaitre>`.

- Add :class:`imblern.over_sampling.SMOTENC` which generate synthetic samples
  on data set with heterogeneous data type (continuous and categorical
  features).
  :issue:`412` by :user:`Denis Dudnik <ddudnik>` and
  :user:`Guillaume Lemaitre <glemaitre>`.

Enhancement
...........

- Add a documentation node to create a balanced random forest from a balanced
  bagging classifier. :issue:`372` by :user:`Guillaume Lemaitre <glemaitre>`.

- Document the metrics to evaluate models on imbalanced dataset. :issue:`367`
  by :user:`Guillaume Lemaitre <glemaitre>`.

- Add support for one-vs-all encoded target to support keras. :issue:`409` by
  :user:`Guillaume Lemaitre <glemaitre>`.

- Adding specific class for borderline and SVM SMOTE using
  :class:`BorderlineSMOTE` and :class:`SVMSMOTE`.
  :issue:`440` by :user:`Guillaume Lemaitre <glemaitre>`.

- Allow :class:`imblearn.over_sampling.RandomOverSampler` can return indices
  using the attributes ``return_indices``.
  :issue:`439` by :user:`Hugo Gascon<hgascon>` and
  :user:`Guillaume Lemaitre <glemaitre>`.

- Allow :class:`imblearn.under_sampling.RandomUnderSampler` and
  :class:`imblearn.over_sampling.RandomOverSampler` to sample object array
  containing strings.
  :issue:`451` by :user:`Guillaume Lemaitre <glemaitre>`.

Bug fixes
.........

- Fix bug in :func:`metrics.classification_report_imbalanced` for which
  `y_pred` and `y_true` where inversed. :issue:`394` by :user:`Ole Silvig
  <klizter>.`

- Fix bug in ADASYN to consider only samples from the current class when
  generating new samples. :issue:`354` by :user:`Guillaume Lemaitre
  <glemaitre>`.

- Fix bug which allow for sorted behavior of ``sampling_strategy`` dictionary
  and thus to obtain a deterministic results when using the same random state.
  :issue:`447` by :user:`Guillaume Lemaitre <glemaitre>`.

- Force to clone scikit-learn estimator passed as attributes to samplers.
  :issue:`446` by :user:`Guillaume Lemaitre <glemaitre>`.

- Fix bug which was not preserving the dtype of X and y when generating
  samples.
  :issue:`450` by :user:`Guillaume Lemaitre <glemaitre>`.

- Add the option to pass a ``Memory`` object to :func:`make_pipeline` like
  in :class:`pipeline.Pipeline` class.
  :issue:`458` by :user:`Christos Aridas <chkoar>`.

Maintenance
...........

- Remove deprecated parameters in 0.2 - :issue:`331` by :user:`Guillaume
  Lemaitre <glemaitre>`.

- Make some modules private.
  :issue:`452` by :user:`Guillaume Lemaitre <glemaitre>`.

- Upgrade requirements to scikit-learn 0.20.
  :issue:`379` by :user:`Guillaume Lemaitre <glemaitre>`.

- Catch deprecation warning in testing.
  :issue:`441` by :user:`Guillaume Lemaitre <glemaitre>`.

- Refactor and impose `pytest` style tests.
  :issue:`470` by :user:`Guillaume Lemaitre <glemaitre>`.

Documentation
.............

- Remove some docstring which are not necessary.
  :issue:`454` by :user:`Guillaume Lemaitre <glemaitre>`.

- Fix the documentation of the ``sampling_strategy`` parameters when used as a
  float.
  :issue:`480` by :user:`Guillaume Lemaitre <glemaitre>`.

Deprecation
...........

- Deprecate ``ratio`` in favor of ``sampling_strategy``. :issue:`411` by
  :user:`Guillaume Lemaitre <glemaitre>`.

- Deprecate the use of a ``dict`` for cleaning methods. a ``list`` should be
  used. :issue:`411` by :user:`Guillaume Lemaitre <glemaitre>`.

- Deprecate ``random_state`` in :class:`imblearn.under_sampling.NearMiss`,
  :class:`imblearn.under_sampling.EditedNearestNeighbors`,
  :class:`imblearn.under_sampling.RepeatedEditedNearestNeighbors`,
  :class:`imblearn.under_sampling.AllKNN`,
  :class:`imblearn.under_sampling.NeighbourhoodCleaningRule`,
  :class:`imblearn.under_sampling.InstanceHardnessThreshold`,
  :class:`imblearn.under_sampling.CondensedNearestNeighbours`.

- Deprecate ``kind``, ``out_step``, ``svm_estimator``, ``m_neighbors`` in
  :class:`imblearn.over_sampling.SMOTE`. User should use
  :class:`imblearn.over_sampling.SVMSMOTE` and
  :class:`imblearn.over_sampling.BorderlineSMOTE`.
  :issue:`440` by :user:`Guillaume Lemaitre <glemaitre>`.

- Deprecate :class:`imblearn.ensemble.EasyEnsemble` in favor of meta-estimator
  :class:`imblearn.ensemble.EasyEnsembleClassifier` which follow the exact
  algorithm described in the literature.
  :issue:`455` by :user:`Guillaume Lemaitre <glemaitre>`.

- Deprecate :class:`imblearn.ensemble.BalanceCascade`.
  :issue:`472` by :user:`Guillaume Lemaitre <glemaitre>`.

- Deprecate ``return_indices`` in all samplers. Instead, an attribute
  ``sample_indices_`` is created whenever the sampler is selecting a subset of
  the original samples.
  :issue:`474` by :user:`Guillaume Lemaitre <glemaitre`.