1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
.. _changes_0_6_2:
Version 0.6.2
==============
**February 16, 2020**
This is a bug-fix release to resolve some issues regarding the handling the
input and the output format of the arrays.
Changelog
---------
- Allow column vectors to be passed as targets.
:pr:`673` by :user:`Christos Aridas <chkoar>`.
- Better input/output handling for pandas, numpy and plain lists.
:pr:`681` by :user:`Christos Aridas <chkoar>`.
.. _changes_0_6_1:
Version 0.6.1
==============
**December 7, 2019**
This is a bug-fix release to primarily resolve some packaging issues in version
0.6.0. It also includes minor documentation improvements and some bug fixes.
Changelog
---------
Bug fixes
.........
- Fix a bug in :class:`imblearn.ensemble.BalancedRandomForestClassifier`
leading to a wrong number of samples used during fitting due `max_samples`
and therefore a bad computation of the OOB score.
:pr:`656` by :user:`Guillaume Lemaitre <glemaitre>`.
.. _changes_0_6:
Version 0.6.0
=============
**December 5, 2019**
Changelog
---------
Changed models
..............
The following models might give some different sampling due to changes in
scikit-learn:
- :class:`imblearn.under_sampling.ClusterCentroids`
- :class:`imblearn.under_sampling.InstanceHardnessThreshold`
The following samplers will give different results due to change linked to
the random state internal usage:
- :class:`imblearn.over_sampling.ADASYN`
- :class:`imblearn.over_sampling.SMOTENC`
Bug fixes
.........
- :class:`imblearn.under_sampling.InstanceHardnessThreshold` now take into
account the `random_state` and will give deterministic results. In addition,
`cross_val_predict` is used to take advantage of the parallelism.
:pr:`599` by :user:`Shihab Shahriar Khan <Shihab-Shahriar>`.
- Fix a bug in :class:`imblearn.ensemble.BalancedRandomForestClassifier`
leading to a wrong computation of the OOB score.
:pr:`656` by :user:`Guillaume Lemaitre <glemaitre>`.
Maintenance
...........
- Update imports from scikit-learn after that some modules have been privatize.
The following import have been changed:
:class:`sklearn.ensemble._base._set_random_states`,
:class:`sklearn.ensemble._forest._parallel_build_trees`,
:class:`sklearn.metrics._classification._check_targets`,
:class:`sklearn.metrics._classification._prf_divide`,
:class:`sklearn.utils.Bunch`,
:class:`sklearn.utils._safe_indexing`,
:class:`sklearn.utils._testing.assert_allclose`,
:class:`sklearn.utils._testing.assert_array_equal`,
:class:`sklearn.utils._testing.SkipTest`.
:pr:`617` by :user:`Guillaume Lemaitre <glemaitre>`.
- Synchronize :mod:`imblearn.pipeline` with :mod:`sklearn.pipeline`.
:pr:`620` by :user:`Guillaume Lemaitre <glemaitre>`.
- Synchronize :class:`imblearn.ensemble.BalancedRandomForestClassifier` and add
parameters `max_samples` and `ccp_alpha`.
:pr:`621` by :user:`Guillaume Lemaitre <glemaitre>`.
Enhancement
...........
- :class:`imblearn.under_sampling.RandomUnderSampling`,
:class:`imblearn.over_sampling.RandomOverSampling`,
:class:`imblearn.datasets.make_imbalance` accepts Pandas DataFrame in and
will output Pandas DataFrame. Similarly, it will accepts Pandas Series in and
will output Pandas Series.
:pr:`636` by :user:`Guillaume Lemaitre <glemaitre>`.
- :class:`imblearn.FunctionSampler` accepts a parameter ``validate`` allowing
to check or not the input ``X`` and ``y``.
:pr:`637` by :user:`Guillaume Lemaitre <glemaitre>`.
- :class:`imblearn.under_sampling.RandomUnderSampler`,
:class:`imblearn.over_sampling.RandomOverSampler` can resample when non
finite values are present in ``X``.
:pr:`643` by :user:`Guillaume Lemaitre <glemaitre>`.
- All samplers will output a Pandas DataFrame if a Pandas DataFrame was given
as an input.
:pr:`644` by :user:`Guillaume Lemaitre <glemaitre>`.
- The samples generation in
:class:`imblearn.over_sampling.ADASYN`,
:class:`imblearn.over_sampling.SMOTE`,
:class:`imblearn.over_sampling.BorderlineSMOTE`,
:class:`imblearn.over_sampling.SVMSMOTE`,
:class:`imblearn.over_sampling.KMeansSMOTE`,
:class:`imblearn.over_sampling.SMOTENC` is now vectorize with giving
an additional speed-up when `X` in sparse.
:pr:`596` and :pr:`649` by :user:`Matt Eding <MattEding>`.
Deprecation
...........
- The following classes have been removed after 2 deprecation cycles:
`ensemble.BalanceCascade` and `ensemble.EasyEnsemble`.
:pr:`617` by :user:`Guillaume Lemaitre <glemaitre>`.
- The following functions have been removed after 2 deprecation cycles:
`utils.check_ratio`.
:pr:`617` by :user:`Guillaume Lemaitre <glemaitre>`.
- The parameter `ratio` and `return_indices` has been removed from all
samplers.
:pr:`617` by :user:`Guillaume Lemaitre <glemaitre>`.
- The parameters `m_neighbors`, `out_step`, `kind`, `svm_estimator`
have been removed from the :class:`imblearn.over_sampling.SMOTE`.
:pr:`617` by :user:`Guillaume Lemaitre <glemaitre>`.
|