1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
"""
=============================================
Compare ensemble classifiers using resampling
=============================================
Ensemble classifiers have shown to improve classification performance compare
to single learner. However, they will be affected by class imbalance. This
example shows the benefit of balancing the training set before to learn
learners. We are making the comparison with non-balanced ensemble methods.
We make a comparison using the balanced accuracy and geometric mean which are
metrics widely used in the literature to evaluate models learned on imbalanced
set.
"""
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# License: MIT
# %%
print(__doc__)
# %% [markdown]
# Load an imbalanced dataset
# --------------------------
#
# We will load the UCI SatImage dataset which has an imbalanced ratio of 9.3:1
# (number of majority sample for a minority sample). The data are then split
# into training and testing.
from sklearn.model_selection import train_test_split
# %%
from imblearn.datasets import fetch_datasets
satimage = fetch_datasets()["satimage"]
X, y = satimage.data, satimage.target
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
# %% [markdown]
# Classification using a single decision tree
# -------------------------------------------
#
# We train a decision tree classifier which will be used as a baseline for the
# rest of this example.
#
# The results are reported in terms of balanced accuracy and geometric mean
# which are metrics widely used in the literature to validate model trained on
# imbalanced set.
# %%
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)
y_pred_tree = tree.predict(X_test)
# %%
from sklearn.metrics import balanced_accuracy_score
from imblearn.metrics import geometric_mean_score
print("Decision tree classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_tree):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_tree):.2f}"
)
# %%
import seaborn as sns
from sklearn.metrics import ConfusionMatrixDisplay
sns.set_context("poster")
disp = ConfusionMatrixDisplay.from_estimator(tree, X_test, y_test, colorbar=False)
_ = disp.ax_.set_title("Decision tree")
# %% [markdown]
# Classification using bagging classifier with and without sampling
# -----------------------------------------------------------------
#
# Instead of using a single tree, we will check if an ensemble of decision tree
# can actually alleviate the issue induced by the class imbalancing. First, we
# will use a bagging classifier and its counter part which internally uses a
# random under-sampling to balanced each bootstrap sample.
# %%
from sklearn.ensemble import BaggingClassifier
from imblearn.ensemble import BalancedBaggingClassifier
bagging = BaggingClassifier(n_estimators=50, random_state=0)
balanced_bagging = BalancedBaggingClassifier(n_estimators=50, random_state=0)
bagging.fit(X_train, y_train)
balanced_bagging.fit(X_train, y_train)
y_pred_bc = bagging.predict(X_test)
y_pred_bbc = balanced_bagging.predict(X_test)
# %% [markdown]
# Balancing each bootstrap sample allows to increase significantly the balanced
# accuracy and the geometric mean.
# %%
print("Bagging classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_bc):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_bc):.2f}"
)
print("Balanced Bagging classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_bbc):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_bbc):.2f}"
)
# %%
import matplotlib.pyplot as plt
fig, axs = plt.subplots(ncols=2, figsize=(10, 5))
ConfusionMatrixDisplay.from_estimator(
bagging, X_test, y_test, ax=axs[0], colorbar=False
)
axs[0].set_title("Bagging")
ConfusionMatrixDisplay.from_estimator(
balanced_bagging, X_test, y_test, ax=axs[1], colorbar=False
)
axs[1].set_title("Balanced Bagging")
fig.tight_layout()
# %% [markdown]
# Classification using random forest classifier with and without sampling
# -----------------------------------------------------------------------
#
# Random forest is another popular ensemble method and it is usually
# outperforming bagging. Here, we used a vanilla random forest and its balanced
# counterpart in which each bootstrap sample is balanced.
# %%
from sklearn.ensemble import RandomForestClassifier
from imblearn.ensemble import BalancedRandomForestClassifier
rf = RandomForestClassifier(n_estimators=50, random_state=0)
brf = BalancedRandomForestClassifier(
n_estimators=50,
sampling_strategy="all",
replacement=True,
bootstrap=False,
random_state=0,
)
rf.fit(X_train, y_train)
brf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
y_pred_brf = brf.predict(X_test)
# %% [markdown]
# Similarly to the previous experiment, the balanced classifier outperform the
# classifier which learn from imbalanced bootstrap samples. In addition, random
# forest outperforms the bagging classifier.
# %%
print("Random Forest classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_rf):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_rf):.2f}"
)
print("Balanced Random Forest classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_brf):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_brf):.2f}"
)
# %%
fig, axs = plt.subplots(ncols=2, figsize=(10, 5))
ConfusionMatrixDisplay.from_estimator(rf, X_test, y_test, ax=axs[0], colorbar=False)
axs[0].set_title("Random forest")
ConfusionMatrixDisplay.from_estimator(brf, X_test, y_test, ax=axs[1], colorbar=False)
axs[1].set_title("Balanced random forest")
fig.tight_layout()
# %% [markdown]
# Boosting classifier
# -------------------
#
# In the same manner, easy ensemble classifier is a bag of balanced AdaBoost
# classifier. However, it will be slower to train than random forest and will
# achieve worse performance.
# %%
from sklearn.ensemble import AdaBoostClassifier
from imblearn.ensemble import EasyEnsembleClassifier, RUSBoostClassifier
estimator = AdaBoostClassifier(n_estimators=10, algorithm="SAMME")
eec = EasyEnsembleClassifier(n_estimators=10, estimator=estimator)
eec.fit(X_train, y_train)
y_pred_eec = eec.predict(X_test)
rusboost = RUSBoostClassifier(n_estimators=10, estimator=estimator)
rusboost.fit(X_train, y_train)
y_pred_rusboost = rusboost.predict(X_test)
# %%
print("Easy ensemble classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_eec):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_eec):.2f}"
)
print("RUSBoost classifier performance:")
print(
f"Balanced accuracy: {balanced_accuracy_score(y_test, y_pred_rusboost):.2f} - "
f"Geometric mean {geometric_mean_score(y_test, y_pred_rusboost):.2f}"
)
# %%
fig, axs = plt.subplots(ncols=2, figsize=(10, 5))
ConfusionMatrixDisplay.from_estimator(eec, X_test, y_test, ax=axs[0], colorbar=False)
axs[0].set_title("Easy Ensemble")
ConfusionMatrixDisplay.from_estimator(
rusboost, X_test, y_test, ax=axs[1], colorbar=False
)
axs[1].set_title("RUSBoost classifier")
fig.tight_layout()
plt.show()
|