1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
|
"""Base class and original SMOTE methods for over-sampling"""
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# Fernando Nogueira
# Christos Aridas
# Dzianis Dudnik
# License: MIT
import math
import numbers
import warnings
import numpy as np
import sklearn
from scipy import sparse
from sklearn.base import clone
from sklearn.exceptions import DataConversionWarning
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.utils import (
_safe_indexing,
check_array,
check_random_state,
)
from sklearn.utils.fixes import parse_version
from sklearn.utils.sparsefuncs_fast import (
csr_mean_variance_axis0,
)
from sklearn.utils.validation import _num_features
from ...metrics.pairwise import ValueDifferenceMetric
from ...utils import Substitution, check_neighbors_object, check_target_type
from ...utils._docstring import _n_jobs_docstring, _random_state_docstring
from ...utils._param_validation import HasMethods, Interval, StrOptions
from ...utils._validation import _check_X
from ...utils.fixes import _is_pandas_df, _mode
from ..base import BaseOverSampler
sklearn_version = parse_version(sklearn.__version__).base_version
if parse_version(sklearn_version) < parse_version("1.5"):
from sklearn.utils import _get_column_indices
else:
from sklearn.utils._indexing import _get_column_indices
class BaseSMOTE(BaseOverSampler):
"""Base class for the different SMOTE algorithms."""
_parameter_constraints: dict = {
**BaseOverSampler._parameter_constraints,
"k_neighbors": [
Interval(numbers.Integral, 1, None, closed="left"),
HasMethods(["kneighbors", "kneighbors_graph"]),
],
"n_jobs": [numbers.Integral, None],
}
def __init__(
self,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(sampling_strategy=sampling_strategy)
self.random_state = random_state
self.k_neighbors = k_neighbors
self.n_jobs = n_jobs
def _validate_estimator(self):
"""Check the NN estimators shared across the different SMOTE
algorithms.
"""
self.nn_k_ = check_neighbors_object(
"k_neighbors", self.k_neighbors, additional_neighbor=1
)
def _make_samples(
self, X, y_dtype, y_type, nn_data, nn_num, n_samples, step_size=1.0, y=None
):
"""A support function that returns artificial samples constructed along
the line connecting nearest neighbours.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Points from which the points will be created.
y_dtype : dtype
The data type of the targets.
y_type : str or int
The minority target value, just so the function can return the
target values for the synthetic variables with correct length in
a clear format.
nn_data : ndarray of shape (n_samples_all, n_features)
Data set carrying all the neighbours to be used
nn_num : ndarray of shape (n_samples_all, k_nearest_neighbours)
The nearest neighbours of each sample in `nn_data`.
n_samples : int
The number of samples to generate.
step_size : float, default=1.0
The step size to create samples.
y : ndarray of shape (n_samples_all,), default=None
The true target associated with `nn_data`. Used by Borderline SMOTE-2 to
weight the distances in the sample generation process.
Returns
-------
X_new : {ndarray, sparse matrix} of shape (n_samples_new, n_features)
Synthetically generated samples.
y_new : ndarray of shape (n_samples_new,)
Target values for synthetic samples.
"""
random_state = check_random_state(self.random_state)
samples_indices = random_state.randint(low=0, high=nn_num.size, size=n_samples)
# np.newaxis for backwards compatability with random_state
steps = step_size * random_state.uniform(size=n_samples)[:, np.newaxis]
rows = np.floor_divide(samples_indices, nn_num.shape[1])
cols = np.mod(samples_indices, nn_num.shape[1])
X_new = self._generate_samples(X, nn_data, nn_num, rows, cols, steps, y_type, y)
y_new = np.full(n_samples, fill_value=y_type, dtype=y_dtype)
return X_new, y_new
def _generate_samples(
self, X, nn_data, nn_num, rows, cols, steps, y_type=None, y=None
):
r"""Generate a synthetic sample.
The rule for the generation is:
.. math::
\mathbf{s_{s}} = \mathbf{s_{i}} + \mathcal{u}(0, 1) \times
(\mathbf{s_{i}} - \mathbf{s_{nn}}) \,
where \mathbf{s_{s}} is the new synthetic samples, \mathbf{s_{i}} is
the current sample, \mathbf{s_{nn}} is a randomly selected neighbors of
\mathbf{s_{i}} and \mathcal{u}(0, 1) is a random number between [0, 1).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Points from which the points will be created.
nn_data : ndarray of shape (n_samples_all, n_features)
Data set carrying all the neighbours to be used.
nn_num : ndarray of shape (n_samples_all, k_nearest_neighbours)
The nearest neighbours of each sample in `nn_data`.
rows : ndarray of shape (n_samples,), dtype=int
Indices pointing at feature vector in X which will be used
as a base for creating new samples.
cols : ndarray of shape (n_samples,), dtype=int
Indices pointing at which nearest neighbor of base feature vector
will be used when creating new samples.
steps : ndarray of shape (n_samples,), dtype=float
Step sizes for new samples.
y_type : str, int or None, default=None
Class label of the current target classes for which we want to generate
samples.
y : ndarray of shape (n_samples_all,), default=None
The true target associated with `nn_data`. Used by Borderline SMOTE-2 to
weight the distances in the sample generation process.
Returns
-------
X_new : {ndarray, sparse matrix} of shape (n_samples, n_features)
Synthetically generated samples.
"""
diffs = nn_data[nn_num[rows, cols]] - X[rows]
if y is not None: # only entering for BorderlineSMOTE-2
random_state = check_random_state(self.random_state)
mask_pair_samples = y[nn_num[rows, cols]] != y_type
diffs[mask_pair_samples] *= random_state.uniform(
low=0.0, high=0.5, size=(mask_pair_samples.sum(), 1)
)
if sparse.issparse(X):
sparse_func = type(X).__name__
steps = getattr(sparse, sparse_func)(steps)
X_new = X[rows] + steps.multiply(diffs)
else:
X_new = X[rows] + steps * diffs
return X_new.astype(X.dtype)
def _in_danger_noise(self, nn_estimator, samples, target_class, y, kind="danger"):
"""Estimate if a set of sample are in danger or noise.
Used by BorderlineSMOTE and SVMSMOTE.
Parameters
----------
nn_estimator : estimator object
An estimator that inherits from
:class:`~sklearn.neighbors.base.KNeighborsMixin` use to determine
if a sample is in danger/noise.
samples : {array-like, sparse matrix} of shape (n_samples, n_features)
The samples to check if either they are in danger or not.
target_class : int or str
The target corresponding class being over-sampled.
y : array-like of shape (n_samples,)
The true label in order to check the neighbour labels.
kind : {'danger', 'noise'}, default='danger'
The type of classification to use. Can be either:
- If 'danger', check if samples are in danger,
- If 'noise', check if samples are noise.
Returns
-------
output : ndarray of shape (n_samples,)
A boolean array where True refer to samples in danger or noise.
"""
x = nn_estimator.kneighbors(samples, return_distance=False)[:, 1:]
nn_label = (y[x] != target_class).astype(int)
n_maj = np.sum(nn_label, axis=1)
if kind == "danger":
# Samples are in danger for m/2 <= m' < m
return np.bitwise_and(
n_maj >= (nn_estimator.n_neighbors - 1) / 2,
n_maj < nn_estimator.n_neighbors - 1,
)
else: # kind == "noise":
# Samples are noise for m = m'
return n_maj == nn_estimator.n_neighbors - 1
@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class SMOTE(BaseSMOTE):
"""Class to perform over-sampling using SMOTE.
This object is an implementation of SMOTE - Synthetic Minority
Over-sampling Technique as presented in [1]_.
Read more in the :ref:`User Guide <smote_adasyn>`.
Parameters
----------
{sampling_strategy}
{random_state}
k_neighbors : int or object, default=5
The nearest neighbors used to define the neighborhood of samples to use
to generate the synthetic samples. You can pass:
- an `int` corresponding to the number of neighbors to use. A
`~sklearn.neighbors.NearestNeighbors` instance will be fitted in this
case.
- an instance of a compatible nearest neighbors algorithm that should
implement both methods `kneighbors` and `kneighbors_graph`. For
instance, it could correspond to a
:class:`~sklearn.neighbors.NearestNeighbors` but could be extended to
any compatible class.
{n_jobs}
.. deprecated:: 0.10
`n_jobs` has been deprecated in 0.10 and will be removed in 0.12.
It was previously used to set `n_jobs` of nearest neighbors
algorithm. From now on, you can pass an estimator where `n_jobs` is
already set instead.
Attributes
----------
sampling_strategy_ : dict
Dictionary containing the information to sample the dataset. The keys
corresponds to the class labels from which to sample and the values
are the number of samples to sample.
nn_k_ : estimator object
Validated k-nearest neighbours created from the `k_neighbors` parameter.
n_features_in_ : int
Number of features in the input dataset.
.. versionadded:: 0.9
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during `fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 0.10
See Also
--------
SMOTENC : Over-sample using SMOTE for continuous and categorical features.
SMOTEN : Over-sample using the SMOTE variant specifically for categorical
features only.
BorderlineSMOTE : Over-sample using the borderline-SMOTE variant.
SVMSMOTE : Over-sample using the SVM-SMOTE variant.
ADASYN : Over-sample using ADASYN.
KMeansSMOTE : Over-sample applying a clustering before to oversample using
SMOTE.
Notes
-----
See the original papers: [1]_ for more details.
Supports multi-class resampling. A one-vs.-rest scheme is used as
originally proposed in [1]_.
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
synthetic minority over-sampling technique," Journal of artificial
intelligence research, 321-357, 2002.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from imblearn.over_sampling import SMOTE
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape %s' % Counter(y))
Original dataset shape Counter({{1: 900, 0: 100}})
>>> sm = SMOTE(random_state=42)
>>> X_res, y_res = sm.fit_resample(X, y)
>>> print('Resampled dataset shape %s' % Counter(y_res))
Resampled dataset shape Counter({{0: 900, 1: 900}})
"""
def __init__(
self,
*,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(
sampling_strategy=sampling_strategy,
random_state=random_state,
k_neighbors=k_neighbors,
n_jobs=n_jobs,
)
def _fit_resample(self, X, y):
# FIXME: to be removed in 0.12
if self.n_jobs is not None:
warnings.warn(
"The parameter `n_jobs` has been deprecated in 0.10 and will be "
"removed in 0.12. You can pass an nearest neighbors estimator where "
"`n_jobs` is already set instead.",
FutureWarning,
)
self._validate_estimator()
X_resampled = [X.copy()]
y_resampled = [y.copy()]
for class_sample, n_samples in self.sampling_strategy_.items():
if n_samples == 0:
continue
target_class_indices = np.flatnonzero(y == class_sample)
X_class = _safe_indexing(X, target_class_indices)
self.nn_k_.fit(X_class)
nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
X_new, y_new = self._make_samples(
X_class, y.dtype, class_sample, X_class, nns, n_samples, 1.0
)
X_resampled.append(X_new)
y_resampled.append(y_new)
if sparse.issparse(X):
X_resampled = sparse.vstack(X_resampled, format=X.format)
else:
X_resampled = np.vstack(X_resampled)
y_resampled = np.hstack(y_resampled)
return X_resampled, y_resampled
@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class SMOTENC(SMOTE):
"""Synthetic Minority Over-sampling Technique for Nominal and Continuous.
Unlike :class:`SMOTE`, SMOTE-NC for dataset containing numerical and
categorical features. However, it is not designed to work with only
categorical features.
Read more in the :ref:`User Guide <smote_adasyn>`.
.. versionadded:: 0.4
Parameters
----------
categorical_features : "infer" or array-like of shape (n_cat_features,) or \
(n_features,), dtype={{bool, int, str}}
Specified which features are categorical. Can either be:
- "auto" (default) to automatically detect categorical features. Only
supported when `X` is a :class:`pandas.DataFrame` and it corresponds
to columns that have a :class:`pandas.CategoricalDtype`;
- array of `int` corresponding to the indices specifying the categorical
features;
- array of `str` corresponding to the feature names. `X` should be a pandas
:class:`pandas.DataFrame` in this case.
- mask array of shape (n_features, ) and ``bool`` dtype for which
``True`` indicates the categorical features.
categorical_encoder : estimator, default=None
One-hot encoder used to encode the categorical features. If `None`, a
:class:`~sklearn.preprocessing.OneHotEncoder` is used with default parameters
apart from `handle_unknown` which is set to 'ignore'.
{sampling_strategy}
{random_state}
k_neighbors : int or object, default=5
The nearest neighbors used to define the neighborhood of samples to use
to generate the synthetic samples. You can pass:
- an `int` corresponding to the number of neighbors to use. A
`~sklearn.neighbors.NearestNeighbors` instance will be fitted in this
case.
- an instance of a compatible nearest neighbors algorithm that should
implement both methods `kneighbors` and `kneighbors_graph`. For
instance, it could correspond to a
:class:`~sklearn.neighbors.NearestNeighbors` but could be extended to
any compatible class.
{n_jobs}
.. deprecated:: 0.10
`n_jobs` has been deprecated in 0.10 and will be removed in 0.12.
It was previously used to set `n_jobs` of nearest neighbors
algorithm. From now on, you can pass an estimator where `n_jobs` is
already set instead.
Attributes
----------
sampling_strategy_ : dict
Dictionary containing the information to sample the dataset. The keys
corresponds to the class labels from which to sample and the values
are the number of samples to sample.
nn_k_ : estimator object
Validated k-nearest neighbours created from the `k_neighbors` parameter.
ohe_ : :class:`~sklearn.preprocessing.OneHotEncoder`
The one-hot encoder used to encode the categorical features.
.. deprecated:: 0.11
`ohe_` is deprecated in 0.11 and will be removed in 0.13. Use
`categorical_encoder_` instead.
categorical_encoder_ : estimator
The encoder used to encode the categorical features.
categorical_features_ : ndarray of shape (n_cat_features,), dtype=np.int64
Indices of the categorical features.
continuous_features_ : ndarray of shape (n_cont_features,), dtype=np.int64
Indices of the continuous features.
median_std_ : dict of int -> float
Median of the standard deviation of the continuous features for each
class to be over-sampled.
n_features_ : int
Number of features observed at `fit`.
n_features_in_ : int
Number of features in the input dataset.
.. versionadded:: 0.9
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during `fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 0.10
See Also
--------
SMOTE : Over-sample using SMOTE.
SMOTEN : Over-sample using the SMOTE variant specifically for categorical
features only.
SVMSMOTE : Over-sample using SVM-SMOTE variant.
BorderlineSMOTE : Over-sample using Borderline-SMOTE variant.
ADASYN : Over-sample using ADASYN.
KMeansSMOTE : Over-sample applying a clustering before to oversample using
SMOTE.
Notes
-----
See the original paper [1]_ for more details.
Supports multi-class resampling. A one-vs.-rest scheme is used as
originally proposed in [1]_.
See
:ref:`sphx_glr_auto_examples_over-sampling_plot_comparison_over_sampling.py`,
and
:ref:`sphx_glr_auto_examples_over-sampling_plot_illustration_generation_sample.py`.
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
synthetic minority over-sampling technique," Journal of artificial
intelligence research, 321-357, 2002.
Examples
--------
>>> from collections import Counter
>>> from numpy.random import RandomState
>>> from sklearn.datasets import make_classification
>>> from imblearn.over_sampling import SMOTENC
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print(f'Original dataset shape {{X.shape}}')
Original dataset shape (1000, 20)
>>> print(f'Original dataset samples per class {{Counter(y)}}')
Original dataset samples per class Counter({{1: 900, 0: 100}})
>>> # simulate the 2 last columns to be categorical features
>>> X[:, -2:] = RandomState(10).randint(0, 4, size=(1000, 2))
>>> sm = SMOTENC(random_state=42, categorical_features=[18, 19])
>>> X_res, y_res = sm.fit_resample(X, y)
>>> print(f'Resampled dataset samples per class {{Counter(y_res)}}')
Resampled dataset samples per class Counter({{0: 900, 1: 900}})
"""
_required_parameters = ["categorical_features"]
_parameter_constraints: dict = {
**SMOTE._parameter_constraints,
"categorical_features": ["array-like", StrOptions({"auto"})],
"categorical_encoder": [
HasMethods(["fit_transform", "inverse_transform"]),
None,
],
}
def __init__(
self,
categorical_features,
*,
categorical_encoder=None,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(
sampling_strategy=sampling_strategy,
random_state=random_state,
k_neighbors=k_neighbors,
n_jobs=n_jobs,
)
self.categorical_features = categorical_features
self.categorical_encoder = categorical_encoder
def _check_X_y(self, X, y):
"""Overwrite the checking to let pass some string for categorical
features.
"""
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
X = _check_X(X)
self._check_n_features(X, reset=True)
self._check_feature_names(X, reset=True)
return X, y, binarize_y
def _validate_column_types(self, X):
"""Compute the indices of the categorical and continuous features."""
if self.categorical_features == "auto":
if not _is_pandas_df(X):
raise ValueError(
"When `categorical_features='auto'`, the input data "
f"should be a pandas.DataFrame. Got {type(X)} instead."
)
import pandas as pd # safely import pandas now
are_columns_categorical = np.array(
[isinstance(col_dtype, pd.CategoricalDtype) for col_dtype in X.dtypes]
)
self.categorical_features_ = np.flatnonzero(are_columns_categorical)
self.continuous_features_ = np.flatnonzero(~are_columns_categorical)
else:
self.categorical_features_ = np.array(
_get_column_indices(X, self.categorical_features)
)
self.continuous_features_ = np.setdiff1d(
np.arange(self.n_features_), self.categorical_features_
)
def _validate_estimator(self):
super()._validate_estimator()
if self.categorical_features_.size == self.n_features_in_:
raise ValueError(
"SMOTE-NC is not designed to work only with categorical "
"features. It requires some numerical features."
)
elif self.categorical_features_.size == 0:
raise ValueError(
"SMOTE-NC is not designed to work only with numerical "
"features. It requires some categorical features."
)
def _fit_resample(self, X, y):
# FIXME: to be removed in 0.12
if self.n_jobs is not None:
warnings.warn(
"The parameter `n_jobs` has been deprecated in 0.10 and will be "
"removed in 0.12. You can pass an nearest neighbors estimator where "
"`n_jobs` is already set instead.",
FutureWarning,
)
self.n_features_ = _num_features(X)
self._validate_column_types(X)
self._validate_estimator()
X_continuous = _safe_indexing(X, self.continuous_features_, axis=1)
X_continuous = check_array(X_continuous, accept_sparse=["csr", "csc"])
X_categorical = _safe_indexing(X, self.categorical_features_, axis=1)
if X_continuous.dtype.name != "object":
dtype_ohe = X_continuous.dtype
else:
dtype_ohe = np.float64
if self.categorical_encoder is None:
self.categorical_encoder_ = OneHotEncoder(
handle_unknown="ignore", dtype=dtype_ohe
)
else:
self.categorical_encoder_ = clone(self.categorical_encoder)
# the input of the OneHotEncoder needs to be dense
X_ohe = self.categorical_encoder_.fit_transform(
X_categorical.toarray() if sparse.issparse(X_categorical) else X_categorical
)
if not sparse.issparse(X_ohe):
X_ohe = sparse.csr_matrix(X_ohe, dtype=dtype_ohe)
X_encoded = sparse.hstack((X_continuous, X_ohe), format="csr", dtype=dtype_ohe)
X_resampled = [X_encoded.copy()]
y_resampled = [y.copy()]
# SMOTE resampling starts here
self.median_std_ = {}
for class_sample, n_samples in self.sampling_strategy_.items():
if n_samples == 0:
continue
target_class_indices = np.flatnonzero(y == class_sample)
X_class = _safe_indexing(X_encoded, target_class_indices)
_, var = csr_mean_variance_axis0(
X_class[:, : self.continuous_features_.size]
)
self.median_std_[class_sample] = np.median(np.sqrt(var))
# In the edge case where the median of the std is equal to 0, the 1s
# entries will be also nullified. In this case, we store the original
# categorical encoding which will be later used for inverting the OHE
if math.isclose(self.median_std_[class_sample], 0):
# This variable will be used when generating data
self._X_categorical_minority_encoded = X_class[
:, self.continuous_features_.size :
].toarray()
# we can replace the 1 entries of the categorical features with the
# median of the standard deviation. It will ensure that whenever
# distance is computed between 2 samples, the difference will be equal
# to the median of the standard deviation as in the original paper.
X_class_categorical = X_class[:, self.continuous_features_.size :]
# With one-hot encoding, the median will be repeated twice. We need
# to divide by sqrt(2) such that we only have one median value
# contributing to the Euclidean distance
X_class_categorical.data[:] = self.median_std_[class_sample] / np.sqrt(2)
X_class[:, self.continuous_features_.size :] = X_class_categorical
self.nn_k_.fit(X_class)
nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
X_new, y_new = self._make_samples(
X_class, y.dtype, class_sample, X_class, nns, n_samples, 1.0
)
X_resampled.append(X_new)
y_resampled.append(y_new)
X_resampled = sparse.vstack(X_resampled, format=X_encoded.format)
y_resampled = np.hstack(y_resampled)
# SMOTE resampling ends here
# reverse the encoding of the categorical features
X_res_cat = X_resampled[:, self.continuous_features_.size :]
X_res_cat.data = np.ones_like(X_res_cat.data)
X_res_cat_dec = self.categorical_encoder_.inverse_transform(X_res_cat)
if sparse.issparse(X):
X_resampled = sparse.hstack(
(
X_resampled[:, : self.continuous_features_.size],
X_res_cat_dec,
),
format="csr",
)
else:
X_resampled = np.hstack(
(
X_resampled[:, : self.continuous_features_.size].toarray(),
X_res_cat_dec,
)
)
indices_reordered = np.argsort(
np.hstack((self.continuous_features_, self.categorical_features_))
)
if sparse.issparse(X_resampled):
# the matrix is supposed to be in the CSR format after the stacking
col_indices = X_resampled.indices.copy()
for idx, col_idx in enumerate(indices_reordered):
mask = X_resampled.indices == col_idx
col_indices[mask] = idx
X_resampled.indices = col_indices
else:
X_resampled = X_resampled[:, indices_reordered]
return X_resampled, y_resampled
def _generate_samples(self, X, nn_data, nn_num, rows, cols, steps, y_type, y=None):
"""Generate a synthetic sample with an additional steps for the
categorical features.
Each new sample is generated the same way than in SMOTE. However, the
categorical features are mapped to the most frequent nearest neighbors
of the majority class.
"""
rng = check_random_state(self.random_state)
X_new = super()._generate_samples(X, nn_data, nn_num, rows, cols, steps)
# change in sparsity structure more efficient with LIL than CSR
X_new = X_new.tolil() if sparse.issparse(X_new) else X_new
# convert to dense array since scipy.sparse doesn't handle 3D
nn_data = nn_data.toarray() if sparse.issparse(nn_data) else nn_data
# In the case that the median std was equal to zeros, we have to
# create non-null entry based on the encoded of OHE
if math.isclose(self.median_std_[y_type], 0):
nn_data[
:, self.continuous_features_.size :
] = self._X_categorical_minority_encoded
all_neighbors = nn_data[nn_num[rows]]
categories_size = [self.continuous_features_.size] + [
cat.size for cat in self.categorical_encoder_.categories_
]
for start_idx, end_idx in zip(
np.cumsum(categories_size)[:-1], np.cumsum(categories_size)[1:]
):
col_maxs = all_neighbors[:, :, start_idx:end_idx].sum(axis=1)
# tie breaking argmax
is_max = np.isclose(col_maxs, col_maxs.max(axis=1, keepdims=True))
max_idxs = rng.permutation(np.argwhere(is_max))
xs, idx_sels = np.unique(max_idxs[:, 0], return_index=True)
col_sels = max_idxs[idx_sels, 1]
ys = start_idx + col_sels
X_new[:, start_idx:end_idx] = 0
X_new[xs, ys] = 1
return X_new
@property
def ohe_(self):
"""One-hot encoder used to encode the categorical features."""
warnings.warn(
"'ohe_' attribute has been deprecated in 0.11 and will be removed "
"in 0.13. Use 'categorical_encoder_' instead.",
FutureWarning,
)
return self.categorical_encoder_
@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class SMOTEN(SMOTE):
"""Synthetic Minority Over-sampling Technique for Nominal.
This method is referred as SMOTEN in [1]_. It expects that the data to
resample are only made of categorical features.
Read more in the :ref:`User Guide <smote_adasyn>`.
.. versionadded:: 0.8
Parameters
----------
categorical_encoder : estimator, default=None
Ordinal encoder used to encode the categorical features. If `None`, a
:class:`~sklearn.preprocessing.OrdinalEncoder` is used with default parameters.
{sampling_strategy}
{random_state}
k_neighbors : int or object, default=5
The nearest neighbors used to define the neighborhood of samples to use
to generate the synthetic samples. You can pass:
- an `int` corresponding to the number of neighbors to use. A
`~sklearn.neighbors.NearestNeighbors` instance will be fitted in this
case.
- an instance of a compatible nearest neighbors algorithm that should
implement both methods `kneighbors` and `kneighbors_graph`. For
instance, it could correspond to a
:class:`~sklearn.neighbors.NearestNeighbors` but could be extended to
any compatible class.
{n_jobs}
.. deprecated:: 0.10
`n_jobs` has been deprecated in 0.10 and will be removed in 0.12.
It was previously used to set `n_jobs` of nearest neighbors
algorithm. From now on, you can pass an estimator where `n_jobs` is
already set instead.
Attributes
----------
categorical_encoder_ : estimator
The encoder used to encode the categorical features.
sampling_strategy_ : dict
Dictionary containing the information to sample the dataset. The keys
corresponds to the class labels from which to sample and the values
are the number of samples to sample.
nn_k_ : estimator object
Validated k-nearest neighbours created from the `k_neighbors` parameter.
n_features_in_ : int
Number of features in the input dataset.
.. versionadded:: 0.9
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during `fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 0.10
See Also
--------
SMOTE : Over-sample using SMOTE.
SMOTENC : Over-sample using SMOTE for continuous and categorical features.
BorderlineSMOTE : Over-sample using the borderline-SMOTE variant.
SVMSMOTE : Over-sample using the SVM-SMOTE variant.
ADASYN : Over-sample using ADASYN.
KMeansSMOTE : Over-sample applying a clustering before to oversample using
SMOTE.
Notes
-----
See the original papers: [1]_ for more details.
Supports multi-class resampling. A one-vs.-rest scheme is used as
originally proposed in [1]_.
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
synthetic minority over-sampling technique," Journal of artificial
intelligence research, 321-357, 2002.
Examples
--------
>>> import numpy as np
>>> X = np.array(["A"] * 10 + ["B"] * 20 + ["C"] * 30, dtype=object).reshape(-1, 1)
>>> y = np.array([0] * 20 + [1] * 40, dtype=np.int32)
>>> from collections import Counter
>>> print(f"Original class counts: {{Counter(y)}}")
Original class counts: Counter({{1: 40, 0: 20}})
>>> from imblearn.over_sampling import SMOTEN
>>> sampler = SMOTEN(random_state=0)
>>> X_res, y_res = sampler.fit_resample(X, y)
>>> print(f"Class counts after resampling {{Counter(y_res)}}")
Class counts after resampling Counter({{0: 40, 1: 40}})
"""
_parameter_constraints: dict = {
**SMOTE._parameter_constraints,
"categorical_encoder": [
HasMethods(["fit_transform", "inverse_transform"]),
None,
],
}
def __init__(
self,
categorical_encoder=None,
*,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(
sampling_strategy=sampling_strategy,
random_state=random_state,
k_neighbors=k_neighbors,
n_jobs=n_jobs,
)
self.categorical_encoder = categorical_encoder
def _check_X_y(self, X, y):
"""Check should accept strings and not sparse matrices."""
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
X, y = self._validate_data(
X,
y,
reset=True,
dtype=None,
accept_sparse=["csr", "csc"],
)
return X, y, binarize_y
def _validate_estimator(self):
"""Force to use precomputed distance matrix."""
super()._validate_estimator()
self.nn_k_.set_params(metric="precomputed")
def _make_samples(self, X_class, klass, y_dtype, nn_indices, n_samples):
random_state = check_random_state(self.random_state)
# generate sample indices that will be used to generate new samples
samples_indices = random_state.choice(
np.arange(X_class.shape[0]), size=n_samples, replace=True
)
# for each drawn samples, select its k-neighbors and generate a sample
# where for each feature individually, each category generated is the
# most common category
X_new = np.squeeze(
_mode(X_class[nn_indices[samples_indices]], axis=1).mode, axis=1
)
y_new = np.full(n_samples, fill_value=klass, dtype=y_dtype)
return X_new, y_new
def _fit_resample(self, X, y):
# FIXME: to be removed in 0.12
if self.n_jobs is not None:
warnings.warn(
"The parameter `n_jobs` has been deprecated in 0.10 and will be "
"removed in 0.12. You can pass an nearest neighbors estimator where "
"`n_jobs` is already set instead.",
FutureWarning,
)
if sparse.issparse(X):
X_sparse_format = X.format
X = X.toarray()
warnings.warn(
"Passing a sparse matrix to SMOTEN is not really efficient since it is"
" converted to a dense array internally.",
DataConversionWarning,
)
else:
X_sparse_format = None
self._validate_estimator()
X_resampled = [X.copy()]
y_resampled = [y.copy()]
if self.categorical_encoder is None:
self.categorical_encoder_ = OrdinalEncoder(dtype=np.int32)
else:
self.categorical_encoder_ = clone(self.categorical_encoder)
X_encoded = self.categorical_encoder_.fit_transform(X)
vdm = ValueDifferenceMetric(
n_categories=[len(cat) for cat in self.categorical_encoder_.categories_]
).fit(X_encoded, y)
for class_sample, n_samples in self.sampling_strategy_.items():
if n_samples == 0:
continue
target_class_indices = np.flatnonzero(y == class_sample)
X_class = _safe_indexing(X_encoded, target_class_indices)
X_class_dist = vdm.pairwise(X_class)
self.nn_k_.fit(X_class_dist)
# the kneigbors search will include the sample itself which is
# expected from the original algorithm
nn_indices = self.nn_k_.kneighbors(X_class_dist, return_distance=False)
X_new, y_new = self._make_samples(
X_class, class_sample, y.dtype, nn_indices, n_samples
)
X_new = self.categorical_encoder_.inverse_transform(X_new)
X_resampled.append(X_new)
y_resampled.append(y_new)
X_resampled = np.vstack(X_resampled)
y_resampled = np.hstack(y_resampled)
if X_sparse_format == "csr":
return sparse.csr_matrix(X_resampled), y_resampled
elif X_sparse_format == "csc":
return sparse.csc_matrix(X_resampled), y_resampled
else:
return X_resampled, y_resampled
def _more_tags(self):
return {"X_types": ["2darray", "dataframe", "string"]}
|