File: base.py

package info (click to toggle)
imbalanced-learn 0.12.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,160 kB
  • sloc: python: 17,221; sh: 481; makefile: 187; javascript: 50
file content (1055 lines) | stat: -rw-r--r-- 39,426 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
"""Base class and original SMOTE methods for over-sampling"""

# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
#          Fernando Nogueira
#          Christos Aridas
#          Dzianis Dudnik
# License: MIT

import math
import numbers
import warnings

import numpy as np
import sklearn
from scipy import sparse
from sklearn.base import clone
from sklearn.exceptions import DataConversionWarning
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.utils import (
    _safe_indexing,
    check_array,
    check_random_state,
)
from sklearn.utils.fixes import parse_version
from sklearn.utils.sparsefuncs_fast import (
    csr_mean_variance_axis0,
)
from sklearn.utils.validation import _num_features

from ...metrics.pairwise import ValueDifferenceMetric
from ...utils import Substitution, check_neighbors_object, check_target_type
from ...utils._docstring import _n_jobs_docstring, _random_state_docstring
from ...utils._param_validation import HasMethods, Interval, StrOptions
from ...utils._validation import _check_X
from ...utils.fixes import _is_pandas_df, _mode
from ..base import BaseOverSampler

sklearn_version = parse_version(sklearn.__version__).base_version
if parse_version(sklearn_version) < parse_version("1.5"):
    from sklearn.utils import _get_column_indices
else:
    from sklearn.utils._indexing import _get_column_indices


class BaseSMOTE(BaseOverSampler):
    """Base class for the different SMOTE algorithms."""

    _parameter_constraints: dict = {
        **BaseOverSampler._parameter_constraints,
        "k_neighbors": [
            Interval(numbers.Integral, 1, None, closed="left"),
            HasMethods(["kneighbors", "kneighbors_graph"]),
        ],
        "n_jobs": [numbers.Integral, None],
    }

    def __init__(
        self,
        sampling_strategy="auto",
        random_state=None,
        k_neighbors=5,
        n_jobs=None,
    ):
        super().__init__(sampling_strategy=sampling_strategy)
        self.random_state = random_state
        self.k_neighbors = k_neighbors
        self.n_jobs = n_jobs

    def _validate_estimator(self):
        """Check the NN estimators shared across the different SMOTE
        algorithms.
        """
        self.nn_k_ = check_neighbors_object(
            "k_neighbors", self.k_neighbors, additional_neighbor=1
        )

    def _make_samples(
        self, X, y_dtype, y_type, nn_data, nn_num, n_samples, step_size=1.0, y=None
    ):
        """A support function that returns artificial samples constructed along
        the line connecting nearest neighbours.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Points from which the points will be created.

        y_dtype : dtype
            The data type of the targets.

        y_type : str or int
            The minority target value, just so the function can return the
            target values for the synthetic variables with correct length in
            a clear format.

        nn_data : ndarray of shape (n_samples_all, n_features)
            Data set carrying all the neighbours to be used

        nn_num : ndarray of shape (n_samples_all, k_nearest_neighbours)
            The nearest neighbours of each sample in `nn_data`.

        n_samples : int
            The number of samples to generate.

        step_size : float, default=1.0
            The step size to create samples.

        y : ndarray of shape (n_samples_all,), default=None
            The true target associated with `nn_data`. Used by Borderline SMOTE-2 to
            weight the distances in the sample generation process.

        Returns
        -------
        X_new : {ndarray, sparse matrix} of shape (n_samples_new, n_features)
            Synthetically generated samples.

        y_new : ndarray of shape (n_samples_new,)
            Target values for synthetic samples.
        """
        random_state = check_random_state(self.random_state)
        samples_indices = random_state.randint(low=0, high=nn_num.size, size=n_samples)

        # np.newaxis for backwards compatability with random_state
        steps = step_size * random_state.uniform(size=n_samples)[:, np.newaxis]
        rows = np.floor_divide(samples_indices, nn_num.shape[1])
        cols = np.mod(samples_indices, nn_num.shape[1])

        X_new = self._generate_samples(X, nn_data, nn_num, rows, cols, steps, y_type, y)
        y_new = np.full(n_samples, fill_value=y_type, dtype=y_dtype)
        return X_new, y_new

    def _generate_samples(
        self, X, nn_data, nn_num, rows, cols, steps, y_type=None, y=None
    ):
        r"""Generate a synthetic sample.

        The rule for the generation is:

        .. math::
           \mathbf{s_{s}} = \mathbf{s_{i}} + \mathcal{u}(0, 1) \times
           (\mathbf{s_{i}} - \mathbf{s_{nn}}) \,

        where \mathbf{s_{s}} is the new synthetic samples, \mathbf{s_{i}} is
        the current sample, \mathbf{s_{nn}} is a randomly selected neighbors of
        \mathbf{s_{i}} and \mathcal{u}(0, 1) is a random number between [0, 1).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Points from which the points will be created.

        nn_data : ndarray of shape (n_samples_all, n_features)
            Data set carrying all the neighbours to be used.

        nn_num : ndarray of shape (n_samples_all, k_nearest_neighbours)
            The nearest neighbours of each sample in `nn_data`.

        rows : ndarray of shape (n_samples,), dtype=int
            Indices pointing at feature vector in X which will be used
            as a base for creating new samples.

        cols : ndarray of shape (n_samples,), dtype=int
            Indices pointing at which nearest neighbor of base feature vector
            will be used when creating new samples.

        steps : ndarray of shape (n_samples,), dtype=float
            Step sizes for new samples.

        y_type : str, int or None, default=None
            Class label of the current target classes for which we want to generate
            samples.

        y : ndarray of shape (n_samples_all,), default=None
            The true target associated with `nn_data`. Used by Borderline SMOTE-2 to
            weight the distances in the sample generation process.

        Returns
        -------
        X_new : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Synthetically generated samples.
        """
        diffs = nn_data[nn_num[rows, cols]] - X[rows]
        if y is not None:  # only entering for BorderlineSMOTE-2
            random_state = check_random_state(self.random_state)
            mask_pair_samples = y[nn_num[rows, cols]] != y_type
            diffs[mask_pair_samples] *= random_state.uniform(
                low=0.0, high=0.5, size=(mask_pair_samples.sum(), 1)
            )

        if sparse.issparse(X):
            sparse_func = type(X).__name__
            steps = getattr(sparse, sparse_func)(steps)
            X_new = X[rows] + steps.multiply(diffs)
        else:
            X_new = X[rows] + steps * diffs

        return X_new.astype(X.dtype)

    def _in_danger_noise(self, nn_estimator, samples, target_class, y, kind="danger"):
        """Estimate if a set of sample are in danger or noise.

        Used by BorderlineSMOTE and SVMSMOTE.

        Parameters
        ----------
        nn_estimator : estimator object
            An estimator that inherits from
            :class:`~sklearn.neighbors.base.KNeighborsMixin` use to determine
            if a sample is in danger/noise.

        samples : {array-like, sparse matrix} of shape (n_samples, n_features)
            The samples to check if either they are in danger or not.

        target_class : int or str
            The target corresponding class being over-sampled.

        y : array-like of shape (n_samples,)
            The true label in order to check the neighbour labels.

        kind : {'danger', 'noise'}, default='danger'
            The type of classification to use. Can be either:

            - If 'danger', check if samples are in danger,
            - If 'noise', check if samples are noise.

        Returns
        -------
        output : ndarray of shape (n_samples,)
            A boolean array where True refer to samples in danger or noise.
        """
        x = nn_estimator.kneighbors(samples, return_distance=False)[:, 1:]
        nn_label = (y[x] != target_class).astype(int)
        n_maj = np.sum(nn_label, axis=1)

        if kind == "danger":
            # Samples are in danger for m/2 <= m' < m
            return np.bitwise_and(
                n_maj >= (nn_estimator.n_neighbors - 1) / 2,
                n_maj < nn_estimator.n_neighbors - 1,
            )
        else:  # kind == "noise":
            # Samples are noise for m = m'
            return n_maj == nn_estimator.n_neighbors - 1


@Substitution(
    sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
    n_jobs=_n_jobs_docstring,
    random_state=_random_state_docstring,
)
class SMOTE(BaseSMOTE):
    """Class to perform over-sampling using SMOTE.

    This object is an implementation of SMOTE - Synthetic Minority
    Over-sampling Technique as presented in [1]_.

    Read more in the :ref:`User Guide <smote_adasyn>`.

    Parameters
    ----------
    {sampling_strategy}

    {random_state}

    k_neighbors : int or object, default=5
        The nearest neighbors used to define the neighborhood of samples to use
        to generate the synthetic samples. You can pass:

        - an `int` corresponding to the number of neighbors to use. A
          `~sklearn.neighbors.NearestNeighbors` instance will be fitted in this
          case.
        - an instance of a compatible nearest neighbors algorithm that should
          implement both methods `kneighbors` and `kneighbors_graph`. For
          instance, it could correspond to a
          :class:`~sklearn.neighbors.NearestNeighbors` but could be extended to
          any compatible class.

    {n_jobs}

        .. deprecated:: 0.10
           `n_jobs` has been deprecated in 0.10 and will be removed in 0.12.
           It was previously used to set `n_jobs` of nearest neighbors
           algorithm. From now on, you can pass an estimator where `n_jobs` is
           already set instead.

    Attributes
    ----------
    sampling_strategy_ : dict
        Dictionary containing the information to sample the dataset. The keys
        corresponds to the class labels from which to sample and the values
        are the number of samples to sample.

    nn_k_ : estimator object
        Validated k-nearest neighbours created from the `k_neighbors` parameter.

    n_features_in_ : int
        Number of features in the input dataset.

        .. versionadded:: 0.9

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during `fit`. Defined only when `X` has feature
        names that are all strings.

        .. versionadded:: 0.10

    See Also
    --------
    SMOTENC : Over-sample using SMOTE for continuous and categorical features.

    SMOTEN : Over-sample using the SMOTE variant specifically for categorical
        features only.

    BorderlineSMOTE : Over-sample using the borderline-SMOTE variant.

    SVMSMOTE : Over-sample using the SVM-SMOTE variant.

    ADASYN : Over-sample using ADASYN.

    KMeansSMOTE : Over-sample applying a clustering before to oversample using
        SMOTE.

    Notes
    -----
    See the original papers: [1]_ for more details.

    Supports multi-class resampling. A one-vs.-rest scheme is used as
    originally proposed in [1]_.

    References
    ----------
    .. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
       synthetic minority over-sampling technique," Journal of artificial
       intelligence research, 321-357, 2002.

    Examples
    --------
    >>> from collections import Counter
    >>> from sklearn.datasets import make_classification
    >>> from imblearn.over_sampling import SMOTE
    >>> X, y = make_classification(n_classes=2, class_sep=2,
    ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
    ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
    >>> print('Original dataset shape %s' % Counter(y))
    Original dataset shape Counter({{1: 900, 0: 100}})
    >>> sm = SMOTE(random_state=42)
    >>> X_res, y_res = sm.fit_resample(X, y)
    >>> print('Resampled dataset shape %s' % Counter(y_res))
    Resampled dataset shape Counter({{0: 900, 1: 900}})
    """

    def __init__(
        self,
        *,
        sampling_strategy="auto",
        random_state=None,
        k_neighbors=5,
        n_jobs=None,
    ):
        super().__init__(
            sampling_strategy=sampling_strategy,
            random_state=random_state,
            k_neighbors=k_neighbors,
            n_jobs=n_jobs,
        )

    def _fit_resample(self, X, y):
        # FIXME: to be removed in 0.12
        if self.n_jobs is not None:
            warnings.warn(
                "The parameter `n_jobs` has been deprecated in 0.10 and will be "
                "removed in 0.12. You can pass an nearest neighbors estimator where "
                "`n_jobs` is already set instead.",
                FutureWarning,
            )

        self._validate_estimator()

        X_resampled = [X.copy()]
        y_resampled = [y.copy()]

        for class_sample, n_samples in self.sampling_strategy_.items():
            if n_samples == 0:
                continue
            target_class_indices = np.flatnonzero(y == class_sample)
            X_class = _safe_indexing(X, target_class_indices)

            self.nn_k_.fit(X_class)
            nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
            X_new, y_new = self._make_samples(
                X_class, y.dtype, class_sample, X_class, nns, n_samples, 1.0
            )
            X_resampled.append(X_new)
            y_resampled.append(y_new)

        if sparse.issparse(X):
            X_resampled = sparse.vstack(X_resampled, format=X.format)
        else:
            X_resampled = np.vstack(X_resampled)
        y_resampled = np.hstack(y_resampled)

        return X_resampled, y_resampled


@Substitution(
    sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
    n_jobs=_n_jobs_docstring,
    random_state=_random_state_docstring,
)
class SMOTENC(SMOTE):
    """Synthetic Minority Over-sampling Technique for Nominal and Continuous.

    Unlike :class:`SMOTE`, SMOTE-NC for dataset containing numerical and
    categorical features. However, it is not designed to work with only
    categorical features.

    Read more in the :ref:`User Guide <smote_adasyn>`.

    .. versionadded:: 0.4

    Parameters
    ----------
    categorical_features : "infer" or array-like of shape (n_cat_features,) or \
            (n_features,), dtype={{bool, int, str}}
        Specified which features are categorical. Can either be:

        - "auto" (default) to automatically detect categorical features. Only
          supported when `X` is a :class:`pandas.DataFrame` and it corresponds
          to columns that have a :class:`pandas.CategoricalDtype`;
        - array of `int` corresponding to the indices specifying the categorical
          features;
        - array of `str` corresponding to the feature names. `X` should be a pandas
          :class:`pandas.DataFrame` in this case.
        - mask array of shape (n_features, ) and ``bool`` dtype for which
          ``True`` indicates the categorical features.

    categorical_encoder : estimator, default=None
        One-hot encoder used to encode the categorical features. If `None`, a
        :class:`~sklearn.preprocessing.OneHotEncoder` is used with default parameters
        apart from `handle_unknown` which is set to 'ignore'.

    {sampling_strategy}

    {random_state}

    k_neighbors : int or object, default=5
        The nearest neighbors used to define the neighborhood of samples to use
        to generate the synthetic samples. You can pass:

        - an `int` corresponding to the number of neighbors to use. A
          `~sklearn.neighbors.NearestNeighbors` instance will be fitted in this
          case.
        - an instance of a compatible nearest neighbors algorithm that should
          implement both methods `kneighbors` and `kneighbors_graph`. For
          instance, it could correspond to a
          :class:`~sklearn.neighbors.NearestNeighbors` but could be extended to
          any compatible class.

    {n_jobs}

        .. deprecated:: 0.10
           `n_jobs` has been deprecated in 0.10 and will be removed in 0.12.
           It was previously used to set `n_jobs` of nearest neighbors
           algorithm. From now on, you can pass an estimator where `n_jobs` is
           already set instead.

    Attributes
    ----------
    sampling_strategy_ : dict
        Dictionary containing the information to sample the dataset. The keys
        corresponds to the class labels from which to sample and the values
        are the number of samples to sample.

    nn_k_ : estimator object
        Validated k-nearest neighbours created from the `k_neighbors` parameter.

    ohe_ : :class:`~sklearn.preprocessing.OneHotEncoder`
        The one-hot encoder used to encode the categorical features.

        .. deprecated:: 0.11
           `ohe_` is deprecated in 0.11 and will be removed in 0.13. Use
           `categorical_encoder_` instead.

    categorical_encoder_ : estimator
        The encoder used to encode the categorical features.

    categorical_features_ : ndarray of shape (n_cat_features,), dtype=np.int64
        Indices of the categorical features.

    continuous_features_ : ndarray of shape (n_cont_features,), dtype=np.int64
        Indices of the continuous features.

    median_std_ : dict of int -> float
        Median of the standard deviation of the continuous features for each
        class to be over-sampled.

    n_features_ : int
        Number of features observed at `fit`.

    n_features_in_ : int
        Number of features in the input dataset.

        .. versionadded:: 0.9

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during `fit`. Defined only when `X` has feature
        names that are all strings.

        .. versionadded:: 0.10

    See Also
    --------
    SMOTE : Over-sample using SMOTE.

    SMOTEN : Over-sample using the SMOTE variant specifically for categorical
        features only.

    SVMSMOTE : Over-sample using SVM-SMOTE variant.

    BorderlineSMOTE : Over-sample using Borderline-SMOTE variant.

    ADASYN : Over-sample using ADASYN.

    KMeansSMOTE : Over-sample applying a clustering before to oversample using
        SMOTE.

    Notes
    -----
    See the original paper [1]_ for more details.

    Supports multi-class resampling. A one-vs.-rest scheme is used as
    originally proposed in [1]_.

    See
    :ref:`sphx_glr_auto_examples_over-sampling_plot_comparison_over_sampling.py`,
    and
    :ref:`sphx_glr_auto_examples_over-sampling_plot_illustration_generation_sample.py`.

    References
    ----------
    .. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
       synthetic minority over-sampling technique," Journal of artificial
       intelligence research, 321-357, 2002.

    Examples
    --------
    >>> from collections import Counter
    >>> from numpy.random import RandomState
    >>> from sklearn.datasets import make_classification
    >>> from imblearn.over_sampling import SMOTENC
    >>> X, y = make_classification(n_classes=2, class_sep=2,
    ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
    ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
    >>> print(f'Original dataset shape {{X.shape}}')
    Original dataset shape (1000, 20)
    >>> print(f'Original dataset samples per class {{Counter(y)}}')
    Original dataset samples per class Counter({{1: 900, 0: 100}})
    >>> # simulate the 2 last columns to be categorical features
    >>> X[:, -2:] = RandomState(10).randint(0, 4, size=(1000, 2))
    >>> sm = SMOTENC(random_state=42, categorical_features=[18, 19])
    >>> X_res, y_res = sm.fit_resample(X, y)
    >>> print(f'Resampled dataset samples per class {{Counter(y_res)}}')
    Resampled dataset samples per class Counter({{0: 900, 1: 900}})
    """

    _required_parameters = ["categorical_features"]

    _parameter_constraints: dict = {
        **SMOTE._parameter_constraints,
        "categorical_features": ["array-like", StrOptions({"auto"})],
        "categorical_encoder": [
            HasMethods(["fit_transform", "inverse_transform"]),
            None,
        ],
    }

    def __init__(
        self,
        categorical_features,
        *,
        categorical_encoder=None,
        sampling_strategy="auto",
        random_state=None,
        k_neighbors=5,
        n_jobs=None,
    ):
        super().__init__(
            sampling_strategy=sampling_strategy,
            random_state=random_state,
            k_neighbors=k_neighbors,
            n_jobs=n_jobs,
        )
        self.categorical_features = categorical_features
        self.categorical_encoder = categorical_encoder

    def _check_X_y(self, X, y):
        """Overwrite the checking to let pass some string for categorical
        features.
        """
        y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
        X = _check_X(X)
        self._check_n_features(X, reset=True)
        self._check_feature_names(X, reset=True)
        return X, y, binarize_y

    def _validate_column_types(self, X):
        """Compute the indices of the categorical and continuous features."""
        if self.categorical_features == "auto":
            if not _is_pandas_df(X):
                raise ValueError(
                    "When `categorical_features='auto'`, the input data "
                    f"should be a pandas.DataFrame. Got {type(X)} instead."
                )
            import pandas as pd  # safely import pandas now

            are_columns_categorical = np.array(
                [isinstance(col_dtype, pd.CategoricalDtype) for col_dtype in X.dtypes]
            )
            self.categorical_features_ = np.flatnonzero(are_columns_categorical)
            self.continuous_features_ = np.flatnonzero(~are_columns_categorical)
        else:
            self.categorical_features_ = np.array(
                _get_column_indices(X, self.categorical_features)
            )
            self.continuous_features_ = np.setdiff1d(
                np.arange(self.n_features_), self.categorical_features_
            )

    def _validate_estimator(self):
        super()._validate_estimator()
        if self.categorical_features_.size == self.n_features_in_:
            raise ValueError(
                "SMOTE-NC is not designed to work only with categorical "
                "features. It requires some numerical features."
            )
        elif self.categorical_features_.size == 0:
            raise ValueError(
                "SMOTE-NC is not designed to work only with numerical "
                "features. It requires some categorical features."
            )

    def _fit_resample(self, X, y):
        # FIXME: to be removed in 0.12
        if self.n_jobs is not None:
            warnings.warn(
                "The parameter `n_jobs` has been deprecated in 0.10 and will be "
                "removed in 0.12. You can pass an nearest neighbors estimator where "
                "`n_jobs` is already set instead.",
                FutureWarning,
            )

        self.n_features_ = _num_features(X)
        self._validate_column_types(X)
        self._validate_estimator()

        X_continuous = _safe_indexing(X, self.continuous_features_, axis=1)
        X_continuous = check_array(X_continuous, accept_sparse=["csr", "csc"])
        X_categorical = _safe_indexing(X, self.categorical_features_, axis=1)
        if X_continuous.dtype.name != "object":
            dtype_ohe = X_continuous.dtype
        else:
            dtype_ohe = np.float64

        if self.categorical_encoder is None:
            self.categorical_encoder_ = OneHotEncoder(
                handle_unknown="ignore", dtype=dtype_ohe
            )
        else:
            self.categorical_encoder_ = clone(self.categorical_encoder)

        # the input of the OneHotEncoder needs to be dense
        X_ohe = self.categorical_encoder_.fit_transform(
            X_categorical.toarray() if sparse.issparse(X_categorical) else X_categorical
        )
        if not sparse.issparse(X_ohe):
            X_ohe = sparse.csr_matrix(X_ohe, dtype=dtype_ohe)

        X_encoded = sparse.hstack((X_continuous, X_ohe), format="csr", dtype=dtype_ohe)
        X_resampled = [X_encoded.copy()]
        y_resampled = [y.copy()]

        # SMOTE resampling starts here
        self.median_std_ = {}
        for class_sample, n_samples in self.sampling_strategy_.items():
            if n_samples == 0:
                continue
            target_class_indices = np.flatnonzero(y == class_sample)
            X_class = _safe_indexing(X_encoded, target_class_indices)

            _, var = csr_mean_variance_axis0(
                X_class[:, : self.continuous_features_.size]
            )
            self.median_std_[class_sample] = np.median(np.sqrt(var))

            # In the edge case where the median of the std is equal to 0, the 1s
            # entries will be also nullified. In this case, we store the original
            # categorical encoding which will be later used for inverting the OHE
            if math.isclose(self.median_std_[class_sample], 0):
                # This variable will be used when generating data
                self._X_categorical_minority_encoded = X_class[
                    :, self.continuous_features_.size :
                ].toarray()

            # we can replace the 1 entries of the categorical features with the
            # median of the standard deviation. It will ensure that whenever
            # distance is computed between 2 samples, the difference will be equal
            # to the median of the standard deviation as in the original paper.
            X_class_categorical = X_class[:, self.continuous_features_.size :]
            # With one-hot encoding, the median will be repeated twice. We need
            # to divide by sqrt(2) such that we only have one median value
            # contributing to the Euclidean distance
            X_class_categorical.data[:] = self.median_std_[class_sample] / np.sqrt(2)
            X_class[:, self.continuous_features_.size :] = X_class_categorical

            self.nn_k_.fit(X_class)
            nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
            X_new, y_new = self._make_samples(
                X_class, y.dtype, class_sample, X_class, nns, n_samples, 1.0
            )
            X_resampled.append(X_new)
            y_resampled.append(y_new)

        X_resampled = sparse.vstack(X_resampled, format=X_encoded.format)
        y_resampled = np.hstack(y_resampled)
        # SMOTE resampling ends here

        # reverse the encoding of the categorical features
        X_res_cat = X_resampled[:, self.continuous_features_.size :]
        X_res_cat.data = np.ones_like(X_res_cat.data)
        X_res_cat_dec = self.categorical_encoder_.inverse_transform(X_res_cat)

        if sparse.issparse(X):
            X_resampled = sparse.hstack(
                (
                    X_resampled[:, : self.continuous_features_.size],
                    X_res_cat_dec,
                ),
                format="csr",
            )
        else:
            X_resampled = np.hstack(
                (
                    X_resampled[:, : self.continuous_features_.size].toarray(),
                    X_res_cat_dec,
                )
            )

        indices_reordered = np.argsort(
            np.hstack((self.continuous_features_, self.categorical_features_))
        )
        if sparse.issparse(X_resampled):
            # the matrix is supposed to be in the CSR format after the stacking
            col_indices = X_resampled.indices.copy()
            for idx, col_idx in enumerate(indices_reordered):
                mask = X_resampled.indices == col_idx
                col_indices[mask] = idx
            X_resampled.indices = col_indices
        else:
            X_resampled = X_resampled[:, indices_reordered]

        return X_resampled, y_resampled

    def _generate_samples(self, X, nn_data, nn_num, rows, cols, steps, y_type, y=None):
        """Generate a synthetic sample with an additional steps for the
        categorical features.

        Each new sample is generated the same way than in SMOTE. However, the
        categorical features are mapped to the most frequent nearest neighbors
        of the majority class.
        """
        rng = check_random_state(self.random_state)
        X_new = super()._generate_samples(X, nn_data, nn_num, rows, cols, steps)
        # change in sparsity structure more efficient with LIL than CSR
        X_new = X_new.tolil() if sparse.issparse(X_new) else X_new

        # convert to dense array since scipy.sparse doesn't handle 3D
        nn_data = nn_data.toarray() if sparse.issparse(nn_data) else nn_data

        # In the case that the median std was equal to zeros, we have to
        # create non-null entry based on the encoded of OHE
        if math.isclose(self.median_std_[y_type], 0):
            nn_data[
                :, self.continuous_features_.size :
            ] = self._X_categorical_minority_encoded

        all_neighbors = nn_data[nn_num[rows]]

        categories_size = [self.continuous_features_.size] + [
            cat.size for cat in self.categorical_encoder_.categories_
        ]

        for start_idx, end_idx in zip(
            np.cumsum(categories_size)[:-1], np.cumsum(categories_size)[1:]
        ):
            col_maxs = all_neighbors[:, :, start_idx:end_idx].sum(axis=1)
            # tie breaking argmax
            is_max = np.isclose(col_maxs, col_maxs.max(axis=1, keepdims=True))
            max_idxs = rng.permutation(np.argwhere(is_max))
            xs, idx_sels = np.unique(max_idxs[:, 0], return_index=True)
            col_sels = max_idxs[idx_sels, 1]

            ys = start_idx + col_sels
            X_new[:, start_idx:end_idx] = 0
            X_new[xs, ys] = 1

        return X_new

    @property
    def ohe_(self):
        """One-hot encoder used to encode the categorical features."""
        warnings.warn(
            "'ohe_' attribute has been deprecated in 0.11 and will be removed "
            "in 0.13. Use 'categorical_encoder_' instead.",
            FutureWarning,
        )
        return self.categorical_encoder_


@Substitution(
    sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
    n_jobs=_n_jobs_docstring,
    random_state=_random_state_docstring,
)
class SMOTEN(SMOTE):
    """Synthetic Minority Over-sampling Technique for Nominal.

    This method is referred as SMOTEN in [1]_. It expects that the data to
    resample are only made of categorical features.

    Read more in the :ref:`User Guide <smote_adasyn>`.

    .. versionadded:: 0.8

    Parameters
    ----------
    categorical_encoder : estimator, default=None
        Ordinal encoder used to encode the categorical features. If `None`, a
        :class:`~sklearn.preprocessing.OrdinalEncoder` is used with default parameters.

    {sampling_strategy}

    {random_state}

    k_neighbors : int or object, default=5
        The nearest neighbors used to define the neighborhood of samples to use
        to generate the synthetic samples. You can pass:

        - an `int` corresponding to the number of neighbors to use. A
          `~sklearn.neighbors.NearestNeighbors` instance will be fitted in this
          case.
        - an instance of a compatible nearest neighbors algorithm that should
          implement both methods `kneighbors` and `kneighbors_graph`. For
          instance, it could correspond to a
          :class:`~sklearn.neighbors.NearestNeighbors` but could be extended to
          any compatible class.

    {n_jobs}

        .. deprecated:: 0.10
           `n_jobs` has been deprecated in 0.10 and will be removed in 0.12.
           It was previously used to set `n_jobs` of nearest neighbors
           algorithm. From now on, you can pass an estimator where `n_jobs` is
           already set instead.

    Attributes
    ----------
    categorical_encoder_ : estimator
        The encoder used to encode the categorical features.

    sampling_strategy_ : dict
        Dictionary containing the information to sample the dataset. The keys
        corresponds to the class labels from which to sample and the values
        are the number of samples to sample.

    nn_k_ : estimator object
        Validated k-nearest neighbours created from the `k_neighbors` parameter.

    n_features_in_ : int
        Number of features in the input dataset.

        .. versionadded:: 0.9

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during `fit`. Defined only when `X` has feature
        names that are all strings.

        .. versionadded:: 0.10

    See Also
    --------
    SMOTE : Over-sample using SMOTE.

    SMOTENC : Over-sample using SMOTE for continuous and categorical features.

    BorderlineSMOTE : Over-sample using the borderline-SMOTE variant.

    SVMSMOTE : Over-sample using the SVM-SMOTE variant.

    ADASYN : Over-sample using ADASYN.

    KMeansSMOTE : Over-sample applying a clustering before to oversample using
        SMOTE.

    Notes
    -----
    See the original papers: [1]_ for more details.

    Supports multi-class resampling. A one-vs.-rest scheme is used as
    originally proposed in [1]_.

    References
    ----------
    .. [1] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE:
       synthetic minority over-sampling technique," Journal of artificial
       intelligence research, 321-357, 2002.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array(["A"] * 10 + ["B"] * 20 + ["C"] * 30, dtype=object).reshape(-1, 1)
    >>> y = np.array([0] * 20 + [1] * 40, dtype=np.int32)
    >>> from collections import Counter
    >>> print(f"Original class counts: {{Counter(y)}}")
    Original class counts: Counter({{1: 40, 0: 20}})
    >>> from imblearn.over_sampling import SMOTEN
    >>> sampler = SMOTEN(random_state=0)
    >>> X_res, y_res = sampler.fit_resample(X, y)
    >>> print(f"Class counts after resampling {{Counter(y_res)}}")
    Class counts after resampling Counter({{0: 40, 1: 40}})
    """

    _parameter_constraints: dict = {
        **SMOTE._parameter_constraints,
        "categorical_encoder": [
            HasMethods(["fit_transform", "inverse_transform"]),
            None,
        ],
    }

    def __init__(
        self,
        categorical_encoder=None,
        *,
        sampling_strategy="auto",
        random_state=None,
        k_neighbors=5,
        n_jobs=None,
    ):
        super().__init__(
            sampling_strategy=sampling_strategy,
            random_state=random_state,
            k_neighbors=k_neighbors,
            n_jobs=n_jobs,
        )
        self.categorical_encoder = categorical_encoder

    def _check_X_y(self, X, y):
        """Check should accept strings and not sparse matrices."""
        y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
        X, y = self._validate_data(
            X,
            y,
            reset=True,
            dtype=None,
            accept_sparse=["csr", "csc"],
        )
        return X, y, binarize_y

    def _validate_estimator(self):
        """Force to use precomputed distance matrix."""
        super()._validate_estimator()
        self.nn_k_.set_params(metric="precomputed")

    def _make_samples(self, X_class, klass, y_dtype, nn_indices, n_samples):
        random_state = check_random_state(self.random_state)
        # generate sample indices that will be used to generate new samples
        samples_indices = random_state.choice(
            np.arange(X_class.shape[0]), size=n_samples, replace=True
        )
        # for each drawn samples, select its k-neighbors and generate a sample
        # where for each feature individually, each category generated is the
        # most common category
        X_new = np.squeeze(
            _mode(X_class[nn_indices[samples_indices]], axis=1).mode, axis=1
        )
        y_new = np.full(n_samples, fill_value=klass, dtype=y_dtype)
        return X_new, y_new

    def _fit_resample(self, X, y):
        # FIXME: to be removed in 0.12
        if self.n_jobs is not None:
            warnings.warn(
                "The parameter `n_jobs` has been deprecated in 0.10 and will be "
                "removed in 0.12. You can pass an nearest neighbors estimator where "
                "`n_jobs` is already set instead.",
                FutureWarning,
            )

        if sparse.issparse(X):
            X_sparse_format = X.format
            X = X.toarray()
            warnings.warn(
                "Passing a sparse matrix to SMOTEN is not really efficient since it is"
                " converted to a dense array internally.",
                DataConversionWarning,
            )
        else:
            X_sparse_format = None

        self._validate_estimator()

        X_resampled = [X.copy()]
        y_resampled = [y.copy()]

        if self.categorical_encoder is None:
            self.categorical_encoder_ = OrdinalEncoder(dtype=np.int32)
        else:
            self.categorical_encoder_ = clone(self.categorical_encoder)
        X_encoded = self.categorical_encoder_.fit_transform(X)

        vdm = ValueDifferenceMetric(
            n_categories=[len(cat) for cat in self.categorical_encoder_.categories_]
        ).fit(X_encoded, y)

        for class_sample, n_samples in self.sampling_strategy_.items():
            if n_samples == 0:
                continue
            target_class_indices = np.flatnonzero(y == class_sample)
            X_class = _safe_indexing(X_encoded, target_class_indices)

            X_class_dist = vdm.pairwise(X_class)
            self.nn_k_.fit(X_class_dist)
            # the kneigbors search will include the sample itself which is
            # expected from the original algorithm
            nn_indices = self.nn_k_.kneighbors(X_class_dist, return_distance=False)
            X_new, y_new = self._make_samples(
                X_class, class_sample, y.dtype, nn_indices, n_samples
            )

            X_new = self.categorical_encoder_.inverse_transform(X_new)
            X_resampled.append(X_new)
            y_resampled.append(y_new)

        X_resampled = np.vstack(X_resampled)
        y_resampled = np.hstack(y_resampled)

        if X_sparse_format == "csr":
            return sparse.csr_matrix(X_resampled), y_resampled
        elif X_sparse_format == "csc":
            return sparse.csc_matrix(X_resampled), y_resampled
        else:
            return X_resampled, y_resampled

    def _more_tags(self):
        return {"X_types": ["2darray", "dataframe", "string"]}