File: test_smote.py

package info (click to toggle)
imbalanced-learn 0.12.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,160 kB
  • sloc: python: 17,221; sh: 481; makefile: 187; javascript: 50
file content (149 lines) | stat: -rw-r--r-- 5,046 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Test the module SMOTE."""
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
#          Christos Aridas
# License: MIT

import numpy as np
from sklearn.neighbors import NearestNeighbors
from sklearn.utils._testing import assert_allclose, assert_array_equal

from imblearn.over_sampling import SMOTE

RND_SEED = 0
X = np.array(
    [
        [0.11622591, -0.0317206],
        [0.77481731, 0.60935141],
        [1.25192108, -0.22367336],
        [0.53366841, -0.30312976],
        [1.52091956, -0.49283504],
        [-0.28162401, -2.10400981],
        [0.83680821, 1.72827342],
        [0.3084254, 0.33299982],
        [0.70472253, -0.73309052],
        [0.28893132, -0.38761769],
        [1.15514042, 0.0129463],
        [0.88407872, 0.35454207],
        [1.31301027, -0.92648734],
        [-1.11515198, -0.93689695],
        [-0.18410027, -0.45194484],
        [0.9281014, 0.53085498],
        [-0.14374509, 0.27370049],
        [-0.41635887, -0.38299653],
        [0.08711622, 0.93259929],
        [1.70580611, -0.11219234],
    ]
)
Y = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0])
R_TOL = 1e-4


def test_sample_regular():
    smote = SMOTE(random_state=RND_SEED)
    X_resampled, y_resampled = smote.fit_resample(X, Y)
    X_gt = np.array(
        [
            [0.11622591, -0.0317206],
            [0.77481731, 0.60935141],
            [1.25192108, -0.22367336],
            [0.53366841, -0.30312976],
            [1.52091956, -0.49283504],
            [-0.28162401, -2.10400981],
            [0.83680821, 1.72827342],
            [0.3084254, 0.33299982],
            [0.70472253, -0.73309052],
            [0.28893132, -0.38761769],
            [1.15514042, 0.0129463],
            [0.88407872, 0.35454207],
            [1.31301027, -0.92648734],
            [-1.11515198, -0.93689695],
            [-0.18410027, -0.45194484],
            [0.9281014, 0.53085498],
            [-0.14374509, 0.27370049],
            [-0.41635887, -0.38299653],
            [0.08711622, 0.93259929],
            [1.70580611, -0.11219234],
            [0.29307743, -0.14670439],
            [0.84976473, -0.15570176],
            [0.61319159, -0.11571668],
            [0.66052536, -0.28246517],
        ]
    )
    y_gt = np.array(
        [0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0]
    )
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)


def test_sample_regular_half():
    sampling_strategy = {0: 9, 1: 12}
    smote = SMOTE(sampling_strategy=sampling_strategy, random_state=RND_SEED)
    X_resampled, y_resampled = smote.fit_resample(X, Y)
    X_gt = np.array(
        [
            [0.11622591, -0.0317206],
            [0.77481731, 0.60935141],
            [1.25192108, -0.22367336],
            [0.53366841, -0.30312976],
            [1.52091956, -0.49283504],
            [-0.28162401, -2.10400981],
            [0.83680821, 1.72827342],
            [0.3084254, 0.33299982],
            [0.70472253, -0.73309052],
            [0.28893132, -0.38761769],
            [1.15514042, 0.0129463],
            [0.88407872, 0.35454207],
            [1.31301027, -0.92648734],
            [-1.11515198, -0.93689695],
            [-0.18410027, -0.45194484],
            [0.9281014, 0.53085498],
            [-0.14374509, 0.27370049],
            [-0.41635887, -0.38299653],
            [0.08711622, 0.93259929],
            [1.70580611, -0.11219234],
            [0.36784496, -0.1953161],
        ]
    )
    y_gt = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)


def test_sample_regular_with_nn():
    nn_k = NearestNeighbors(n_neighbors=6)
    smote = SMOTE(random_state=RND_SEED, k_neighbors=nn_k)
    X_resampled, y_resampled = smote.fit_resample(X, Y)
    X_gt = np.array(
        [
            [0.11622591, -0.0317206],
            [0.77481731, 0.60935141],
            [1.25192108, -0.22367336],
            [0.53366841, -0.30312976],
            [1.52091956, -0.49283504],
            [-0.28162401, -2.10400981],
            [0.83680821, 1.72827342],
            [0.3084254, 0.33299982],
            [0.70472253, -0.73309052],
            [0.28893132, -0.38761769],
            [1.15514042, 0.0129463],
            [0.88407872, 0.35454207],
            [1.31301027, -0.92648734],
            [-1.11515198, -0.93689695],
            [-0.18410027, -0.45194484],
            [0.9281014, 0.53085498],
            [-0.14374509, 0.27370049],
            [-0.41635887, -0.38299653],
            [0.08711622, 0.93259929],
            [1.70580611, -0.11219234],
            [0.29307743, -0.14670439],
            [0.84976473, -0.15570176],
            [0.61319159, -0.11571668],
            [0.66052536, -0.28246517],
        ]
    )
    y_gt = np.array(
        [0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0]
    )
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)