File: estimator_checks.py

package info (click to toggle)
imbalanced-learn 0.12.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,160 kB
  • sloc: python: 17,221; sh: 481; makefile: 187; javascript: 50
file content (828 lines) | stat: -rw-r--r-- 29,120 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
"""Utils to check the samplers and compatibility with scikit-learn"""

# Adapated from scikit-learn
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# License: MIT

import re
import sys
import traceback
import warnings
from collections import Counter
from functools import partial

import numpy as np
import pytest
import sklearn
from scipy import sparse
from sklearn.base import clone, is_classifier, is_regressor
from sklearn.cluster import KMeans
from sklearn.datasets import (  # noqa
    load_iris,
    make_blobs,
    make_classification,
    make_multilabel_classification,
)
from sklearn.exceptions import SkipTestWarning
from sklearn.preprocessing import StandardScaler, label_binarize
from sklearn.utils._tags import _safe_tags
from sklearn.utils._testing import (
    SkipTest,
    assert_allclose,
    assert_array_equal,
    assert_raises_regex,
    raises,
    set_random_state,
)
from sklearn.utils.estimator_checks import (
    _enforce_estimator_tags_y,
    _get_check_estimator_ids,
    _maybe_mark_xfail,
)

try:
    from sklearn.utils.estimator_checks import _enforce_estimator_tags_x
except ImportError:
    # scikit-learn >= 1.2
    from sklearn.utils.estimator_checks import (
        _enforce_estimator_tags_X as _enforce_estimator_tags_x,
    )

from sklearn.utils.fixes import parse_version
from sklearn.utils.multiclass import type_of_target

from imblearn.datasets import make_imbalance
from imblearn.over_sampling.base import BaseOverSampler
from imblearn.under_sampling.base import BaseCleaningSampler, BaseUnderSampler
from imblearn.utils._param_validation import generate_invalid_param_val, make_constraint

sklearn_version = parse_version(sklearn.__version__)


def sample_dataset_generator():
    X, y = make_classification(
        n_samples=1000,
        n_classes=3,
        n_informative=4,
        weights=[0.2, 0.3, 0.5],
        random_state=0,
    )
    return X, y


@pytest.fixture(name="sample_dataset_generator")
def sample_dataset_generator_fixture():
    return sample_dataset_generator()


def _set_checking_parameters(estimator):
    params = estimator.get_params()
    name = estimator.__class__.__name__
    if "n_estimators" in params:
        estimator.set_params(n_estimators=min(5, estimator.n_estimators))
    if name == "ClusterCentroids":
        if sklearn_version < parse_version("1.1"):
            algorithm = "full"
        else:
            algorithm = "lloyd"
        estimator.set_params(
            voting="soft",
            estimator=KMeans(random_state=0, algorithm=algorithm, n_init=1),
        )
    if name == "KMeansSMOTE":
        estimator.set_params(kmeans_estimator=12)
    if name == "BalancedRandomForestClassifier":
        # TODO: remove in 0.13
        # future default in 0.13
        estimator.set_params(replacement=True, sampling_strategy="all", bootstrap=False)


def _yield_sampler_checks(sampler):
    tags = sampler._get_tags()
    yield check_target_type
    yield check_samplers_one_label
    yield check_samplers_fit
    yield check_samplers_fit_resample
    yield check_samplers_sampling_strategy_fit_resample
    if "sparse" in tags["X_types"]:
        yield check_samplers_sparse
    if "dataframe" in tags["X_types"]:
        yield check_samplers_pandas
        yield check_samplers_pandas_sparse
    if "string" in tags["X_types"]:
        yield check_samplers_string
    if tags["allow_nan"]:
        yield check_samplers_nan
    yield check_samplers_list
    yield check_samplers_multiclass_ova
    yield check_samplers_preserve_dtype
    # we don't filter samplers based on their tag here because we want to make
    # sure that the fitted attribute does not exist if the tag is not
    # stipulated
    yield check_samplers_sample_indices
    yield check_samplers_2d_target
    yield check_sampler_get_feature_names_out
    yield check_sampler_get_feature_names_out_pandas


def _yield_classifier_checks(classifier):
    yield check_classifier_on_multilabel_or_multioutput_targets
    yield check_classifiers_with_encoded_labels


def _yield_all_checks(estimator):
    name = estimator.__class__.__name__
    tags = estimator._get_tags()
    if tags["_skip_test"]:
        warnings.warn(
            f"Explicit SKIP via _skip_test tag for estimator {name}.",
            SkipTestWarning,
        )
        return
    # trigger our checks if this is a SamplerMixin
    if hasattr(estimator, "fit_resample"):
        for check in _yield_sampler_checks(estimator):
            yield check
    if hasattr(estimator, "predict"):
        for check in _yield_classifier_checks(estimator):
            yield check


def parametrize_with_checks(estimators):
    """Pytest specific decorator for parametrizing estimator checks.

    The `id` of each check is set to be a pprint version of the estimator
    and the name of the check with its keyword arguments.
    This allows to use `pytest -k` to specify which tests to run::

        pytest test_check_estimators.py -k check_estimators_fit_returns_self

    Parameters
    ----------
    estimators : list of estimators instances
        Estimators to generated checks for.

    Returns
    -------
    decorator : `pytest.mark.parametrize`

    Examples
    --------
    >>> from sklearn.utils.estimator_checks import parametrize_with_checks
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.tree import DecisionTreeRegressor

    >>> @parametrize_with_checks([LogisticRegression(),
    ...                           DecisionTreeRegressor()])
    ... def test_sklearn_compatible_estimator(estimator, check):
    ...     check(estimator)
    """

    def checks_generator():
        for estimator in estimators:
            name = type(estimator).__name__
            for check in _yield_all_checks(estimator):
                check = partial(check, name)
                yield _maybe_mark_xfail(estimator, check, pytest)

    return pytest.mark.parametrize(
        "estimator, check", checks_generator(), ids=_get_check_estimator_ids
    )


def check_target_type(name, estimator_orig):
    estimator = clone(estimator_orig)
    # should raise warning if the target is continuous (we cannot raise error)
    X = np.random.random((20, 2))
    y = np.linspace(0, 1, 20)
    msg = "Unknown label type:"
    assert_raises_regex(
        ValueError,
        msg,
        estimator.fit_resample,
        X,
        y,
    )
    # if the target is multilabel then we should raise an error
    rng = np.random.RandomState(42)
    y = rng.randint(2, size=(20, 3))
    msg = "Multilabel and multioutput targets are not supported."
    assert_raises_regex(
        ValueError,
        msg,
        estimator.fit_resample,
        X,
        y,
    )


def check_samplers_one_label(name, sampler_orig):
    sampler = clone(sampler_orig)
    error_string_fit = "Sampler can't balance when only one class is present."
    X = np.random.random((20, 2))
    y = np.zeros(20)
    try:
        sampler.fit_resample(X, y)
    except ValueError as e:
        if "class" not in repr(e):
            print(error_string_fit, sampler.__class__.__name__, e)
            traceback.print_exc(file=sys.stdout)
            raise e
        else:
            return
    except Exception as exc:
        print(error_string_fit, traceback, exc)
        traceback.print_exc(file=sys.stdout)
        raise exc
    raise AssertionError(error_string_fit)


def check_samplers_fit(name, sampler_orig):
    sampler = clone(sampler_orig)
    np.random.seed(42)  # Make this test reproducible
    X = np.random.random((30, 2))
    y = np.array([1] * 20 + [0] * 10)
    sampler.fit_resample(X, y)
    assert hasattr(
        sampler, "sampling_strategy_"
    ), "No fitted attribute sampling_strategy_"


def check_samplers_fit_resample(name, sampler_orig):
    sampler = clone(sampler_orig)
    X, y = sample_dataset_generator()
    target_stats = Counter(y)
    X_res, y_res = sampler.fit_resample(X, y)
    if isinstance(sampler, BaseOverSampler):
        target_stats_res = Counter(y_res)
        n_samples = max(target_stats.values())
        assert all(value >= n_samples for value in Counter(y_res).values())
    elif isinstance(sampler, BaseUnderSampler):
        n_samples = min(target_stats.values())
        if name == "InstanceHardnessThreshold":
            # IHT does not enforce the number of samples but provide a number
            # of samples the closest to the desired target.
            assert all(
                Counter(y_res)[k] <= target_stats[k] for k in target_stats.keys()
            )
        else:
            assert all(value == n_samples for value in Counter(y_res).values())
    elif isinstance(sampler, BaseCleaningSampler):
        target_stats_res = Counter(y_res)
        class_minority = min(target_stats, key=target_stats.get)
        assert all(
            target_stats[class_sample] > target_stats_res[class_sample]
            for class_sample in target_stats.keys()
            if class_sample != class_minority
        )


def check_samplers_sampling_strategy_fit_resample(name, sampler_orig):
    sampler = clone(sampler_orig)
    # in this test we will force all samplers to not change the class 1
    X, y = sample_dataset_generator()
    expected_stat = Counter(y)[1]
    if isinstance(sampler, BaseOverSampler):
        sampling_strategy = {2: 498, 0: 498}
        sampler.set_params(sampling_strategy=sampling_strategy)
        X_res, y_res = sampler.fit_resample(X, y)
        assert Counter(y_res)[1] == expected_stat
    elif isinstance(sampler, BaseUnderSampler):
        sampling_strategy = {2: 201, 0: 201}
        sampler.set_params(sampling_strategy=sampling_strategy)
        X_res, y_res = sampler.fit_resample(X, y)
        assert Counter(y_res)[1] == expected_stat
    elif isinstance(sampler, BaseCleaningSampler):
        sampling_strategy = [2, 0]
        sampler.set_params(sampling_strategy=sampling_strategy)
        X_res, y_res = sampler.fit_resample(X, y)
        assert Counter(y_res)[1] == expected_stat


def check_samplers_sparse(name, sampler_orig):
    sampler = clone(sampler_orig)
    # check that sparse matrices can be passed through the sampler leading to
    # the same results than dense
    X, y = sample_dataset_generator()
    X_sparse = sparse.csr_matrix(X)
    X_res_sparse, y_res_sparse = sampler.fit_resample(X_sparse, y)
    sampler = clone(sampler)
    X_res, y_res = sampler.fit_resample(X, y)
    assert sparse.issparse(X_res_sparse)
    assert_allclose(X_res_sparse.toarray(), X_res, rtol=1e-5)
    assert_allclose(y_res_sparse, y_res)


def check_samplers_pandas_sparse(name, sampler_orig):
    pd = pytest.importorskip("pandas")
    sampler = clone(sampler_orig)
    # Check that the samplers handle pandas dataframe and pandas series
    X, y = sample_dataset_generator()
    X_df = pd.DataFrame(
        X, columns=[str(i) for i in range(X.shape[1])], dtype=pd.SparseDtype(float, 0)
    )
    y_s = pd.Series(y, name="class")

    X_res_df, y_res_s = sampler.fit_resample(X_df, y_s)
    X_res, y_res = sampler.fit_resample(X, y)

    # check that we return the same type for dataframes or series types
    assert isinstance(X_res_df, pd.DataFrame)
    assert isinstance(y_res_s, pd.Series)

    for column_dtype in X_res_df.dtypes:
        assert isinstance(column_dtype, pd.SparseDtype)

    assert X_df.columns.tolist() == X_res_df.columns.tolist()
    assert y_s.name == y_res_s.name

    # FIXME: we should use to_numpy with pandas >= 0.25
    assert_allclose(X_res_df.values, X_res)
    assert_allclose(y_res_s.values, y_res)


def check_samplers_pandas(name, sampler_orig):
    pd = pytest.importorskip("pandas")
    sampler = clone(sampler_orig)
    # Check that the samplers handle pandas dataframe and pandas series
    X, y = sample_dataset_generator()
    X_df = pd.DataFrame(X, columns=[str(i) for i in range(X.shape[1])])
    y_df = pd.DataFrame(y)
    y_s = pd.Series(y, name="class")

    X_res_df, y_res_s = sampler.fit_resample(X_df, y_s)
    X_res_df, y_res_df = sampler.fit_resample(X_df, y_df)
    X_res, y_res = sampler.fit_resample(X, y)

    # check that we return the same type for dataframes or series types
    assert isinstance(X_res_df, pd.DataFrame)
    assert isinstance(y_res_df, pd.DataFrame)
    assert isinstance(y_res_s, pd.Series)

    assert X_df.columns.tolist() == X_res_df.columns.tolist()
    assert y_df.columns.tolist() == y_res_df.columns.tolist()
    assert y_s.name == y_res_s.name

    # FIXME: we should use to_numpy with pandas >= 0.25
    assert_allclose(X_res_df.values, X_res)
    assert_allclose(y_res_df.values.ravel(), y_res)
    assert_allclose(y_res_s.values, y_res)


def check_samplers_list(name, sampler_orig):
    sampler = clone(sampler_orig)
    # Check that the can samplers handle simple lists
    X, y = sample_dataset_generator()
    X_list = X.tolist()
    y_list = y.tolist()

    X_res, y_res = sampler.fit_resample(X, y)
    X_res_list, y_res_list = sampler.fit_resample(X_list, y_list)

    assert isinstance(X_res_list, list)
    assert isinstance(y_res_list, list)

    assert_allclose(X_res, X_res_list)
    assert_allclose(y_res, y_res_list)


def check_samplers_multiclass_ova(name, sampler_orig):
    sampler = clone(sampler_orig)
    # Check that multiclass target lead to the same results than OVA encoding
    X, y = sample_dataset_generator()
    y_ova = label_binarize(y, classes=np.unique(y))
    X_res, y_res = sampler.fit_resample(X, y)
    X_res_ova, y_res_ova = sampler.fit_resample(X, y_ova)
    assert_allclose(X_res, X_res_ova)
    assert type_of_target(y_res_ova) == type_of_target(y_ova)
    assert_allclose(y_res, y_res_ova.argmax(axis=1))


def check_samplers_2d_target(name, sampler_orig):
    sampler = clone(sampler_orig)
    X, y = sample_dataset_generator()

    y = y.reshape(-1, 1)  # Make the target 2d
    sampler.fit_resample(X, y)


def check_samplers_preserve_dtype(name, sampler_orig):
    sampler = clone(sampler_orig)
    X, y = sample_dataset_generator()
    # Cast X and y to not default dtype
    X = X.astype(np.float32)
    y = y.astype(np.int32)
    X_res, y_res = sampler.fit_resample(X, y)
    assert X.dtype == X_res.dtype, "X dtype is not preserved"
    assert y.dtype == y_res.dtype, "y dtype is not preserved"


def check_samplers_sample_indices(name, sampler_orig):
    sampler = clone(sampler_orig)
    X, y = sample_dataset_generator()
    sampler.fit_resample(X, y)
    sample_indices = sampler._get_tags().get("sample_indices", None)
    if sample_indices:
        assert hasattr(sampler, "sample_indices_") is sample_indices
    else:
        assert not hasattr(sampler, "sample_indices_")


def check_samplers_string(name, sampler_orig):
    rng = np.random.RandomState(0)
    sampler = clone(sampler_orig)
    categories = np.array(["A", "B", "C"], dtype=object)
    n_samples = 30
    X = rng.randint(low=0, high=3, size=n_samples).reshape(-1, 1)
    X = categories[X]
    y = rng.permutation([0] * 10 + [1] * 20)

    X_res, y_res = sampler.fit_resample(X, y)
    assert X_res.dtype == object
    assert X_res.shape[0] == y_res.shape[0]
    assert_array_equal(np.unique(X_res.ravel()), categories)


def check_samplers_nan(name, sampler_orig):
    rng = np.random.RandomState(0)
    sampler = clone(sampler_orig)
    categories = np.array([0, 1, np.nan], dtype=np.float64)
    n_samples = 100
    X = rng.randint(low=0, high=3, size=n_samples).reshape(-1, 1)
    X = categories[X]
    y = rng.permutation([0] * 40 + [1] * 60)

    X_res, y_res = sampler.fit_resample(X, y)
    assert X_res.dtype == np.float64
    assert X_res.shape[0] == y_res.shape[0]
    assert np.any(np.isnan(X_res.ravel()))


def check_classifier_on_multilabel_or_multioutput_targets(name, estimator_orig):
    estimator = clone(estimator_orig)
    X, y = make_multilabel_classification(n_samples=30)
    msg = "Multilabel and multioutput targets are not supported."
    with pytest.raises(ValueError, match=msg):
        estimator.fit(X, y)


def check_classifiers_with_encoded_labels(name, classifier_orig):
    # Non-regression test for #709
    # https://github.com/scikit-learn-contrib/imbalanced-learn/issues/709
    pd = pytest.importorskip("pandas")
    classifier = clone(classifier_orig)
    iris = load_iris(as_frame=True)
    df, y = iris.data, iris.target
    y = pd.Series(iris.target_names[iris.target], dtype="category")
    df, y = make_imbalance(
        df,
        y,
        sampling_strategy={
            "setosa": 30,
            "versicolor": 20,
            "virginica": 50,
        },
    )
    classifier.set_params(sampling_strategy={"setosa": 20, "virginica": 20})
    classifier.fit(df, y)
    assert set(classifier.classes_) == set(y.cat.categories.tolist())
    y_pred = classifier.predict(df)
    assert set(y_pred) == set(y.cat.categories.tolist())


def check_param_validation(name, estimator_orig):
    # Check that an informative error is raised when the value of a constructor
    # parameter does not have an appropriate type or value.
    rng = np.random.RandomState(0)
    X = rng.uniform(size=(20, 5))
    y = rng.randint(0, 2, size=20)
    y = _enforce_estimator_tags_y(estimator_orig, y)

    estimator_params = estimator_orig.get_params(deep=False).keys()

    # check that there is a constraint for each parameter
    if estimator_params:
        validation_params = estimator_orig._parameter_constraints.keys()
        unexpected_params = set(validation_params) - set(estimator_params)
        missing_params = set(estimator_params) - set(validation_params)
        err_msg = (
            f"Mismatch between _parameter_constraints and the parameters of {name}."
            f"\nConsider the unexpected parameters {unexpected_params} and expected but"
            f" missing parameters {missing_params}"
        )
        assert validation_params == estimator_params, err_msg

    # this object does not have a valid type for sure for all params
    param_with_bad_type = type("BadType", (), {})()

    fit_methods = ["fit", "partial_fit", "fit_transform", "fit_predict", "fit_resample"]

    for param_name in estimator_params:
        constraints = estimator_orig._parameter_constraints[param_name]

        if constraints == "no_validation":
            # This parameter is not validated
            continue  # pragma: no cover

        match = rf"The '{param_name}' parameter of {name} must be .* Got .* instead."
        err_msg = (
            f"{name} does not raise an informative error message when the "
            f"parameter {param_name} does not have a valid type or value."
        )

        estimator = clone(estimator_orig)

        # First, check that the error is raised if param doesn't match any valid type.
        estimator.set_params(**{param_name: param_with_bad_type})

        for method in fit_methods:
            if not hasattr(estimator, method):
                # the method is not accessible with the current set of parameters
                continue

            with raises(ValueError, match=match, err_msg=err_msg):
                if any(
                    isinstance(X_type, str) and X_type.endswith("labels")
                    for X_type in _safe_tags(estimator, key="X_types")
                ):
                    # The estimator is a label transformer and take only `y`
                    getattr(estimator, method)(y)  # pragma: no cover
                else:
                    getattr(estimator, method)(X, y)

        # Then, for constraints that are more than a type constraint, check that the
        # error is raised if param does match a valid type but does not match any valid
        # value for this type.
        constraints = [make_constraint(constraint) for constraint in constraints]

        for constraint in constraints:
            try:
                bad_value = generate_invalid_param_val(constraint)
            except NotImplementedError:
                continue

            estimator.set_params(**{param_name: bad_value})

            for method in fit_methods:
                if not hasattr(estimator, method):
                    # the method is not accessible with the current set of parameters
                    continue

                with raises(ValueError, match=match, err_msg=err_msg):
                    if any(
                        X_type.endswith("labels")
                        for X_type in _safe_tags(estimator, key="X_types")
                    ):
                        # The estimator is a label transformer and take only `y`
                        getattr(estimator, method)(y)  # pragma: no cover
                    else:
                        getattr(estimator, method)(X, y)


def check_dataframe_column_names_consistency(name, estimator_orig):
    try:
        import pandas as pd
    except ImportError:
        raise SkipTest(
            "pandas is not installed: not checking column name consistency for pandas"
        )

    tags = _safe_tags(estimator_orig)
    is_supported_X_types = (
        "2darray" in tags["X_types"] or "categorical" in tags["X_types"]
    )

    if not is_supported_X_types or tags["no_validation"]:
        return

    rng = np.random.RandomState(0)

    estimator = clone(estimator_orig)
    set_random_state(estimator)

    X_orig = rng.normal(size=(150, 8))

    X_orig = _enforce_estimator_tags_x(estimator, X_orig)
    n_samples, n_features = X_orig.shape

    names = np.array([f"col_{i}" for i in range(n_features)])
    X = pd.DataFrame(X_orig, columns=names)

    if is_regressor(estimator):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(low=0, high=2, size=n_samples)
    y = _enforce_estimator_tags_y(estimator, y)

    # Check that calling `fit` does not raise any warnings about feature names.
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "error",
            message="X does not have valid feature names",
            category=UserWarning,
            module="imblearn",
        )
        estimator.fit(X, y)

    if not hasattr(estimator, "feature_names_in_"):
        raise ValueError(
            "Estimator does not have a feature_names_in_ "
            "attribute after fitting with a dataframe"
        )
    assert isinstance(estimator.feature_names_in_, np.ndarray)
    assert estimator.feature_names_in_.dtype == object
    assert_array_equal(estimator.feature_names_in_, names)

    # Only check imblearn estimators for feature_names_in_ in docstring
    module_name = estimator_orig.__module__
    if (
        module_name.startswith("imblearn.")
        and not ("test_" in module_name or module_name.endswith("_testing"))
        and ("feature_names_in_" not in (estimator_orig.__doc__))
    ):
        raise ValueError(
            f"Estimator {name} does not document its feature_names_in_ attribute"
        )

    check_methods = []
    for method in (
        "predict",
        "transform",
        "decision_function",
        "predict_proba",
        "score",
        "score_samples",
        "predict_log_proba",
    ):
        if not hasattr(estimator, method):
            continue

        callable_method = getattr(estimator, method)
        if method == "score":
            callable_method = partial(callable_method, y=y)
        check_methods.append((method, callable_method))

    for _, method in check_methods:
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "error",
                message="X does not have valid feature names",
                category=UserWarning,
                module="sklearn",
            )
            method(X)  # works without UserWarning for valid features

    invalid_names = [
        (names[::-1], "Feature names must be in the same order as they were in fit."),
        (
            [f"another_prefix_{i}" for i in range(n_features)],
            "Feature names unseen at fit time:\n- another_prefix_0\n-"
            " another_prefix_1\n",
        ),
        (
            names[:3],
            f"Feature names seen at fit time, yet now missing:\n- {min(names[3:])}\n",
        ),
    ]
    params = {
        key: value
        for key, value in estimator.get_params().items()
        if "early_stopping" in key
    }
    early_stopping_enabled = any(value is True for value in params.values())

    for invalid_name, additional_message in invalid_names:
        X_bad = pd.DataFrame(X, columns=invalid_name)

        for name, method in check_methods:
            if sklearn_version >= parse_version("1.2"):
                expected_msg = re.escape(
                    "The feature names should match those that were passed during fit."
                    f"\n{additional_message}"
                )
                with raises(
                    ValueError, match=expected_msg, err_msg=f"{name} did not raise"
                ):
                    method(X_bad)
            else:
                expected_msg = re.escape(
                    "The feature names should match those that were passed "
                    "during fit. Starting version 1.2, an error will be raised.\n"
                    f"{additional_message}"
                )
                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "error",
                        category=FutureWarning,
                        module="sklearn",
                    )
                    with raises(
                        FutureWarning,
                        match=expected_msg,
                        err_msg=f"{name} did not raise",
                    ):
                        method(X_bad)

        # partial_fit checks on second call
        # Do not call partial fit if early_stopping is on
        if not hasattr(estimator, "partial_fit") or early_stopping_enabled:
            continue

        estimator = clone(estimator_orig)
        if is_classifier(estimator):
            classes = np.unique(y)
            estimator.partial_fit(X, y, classes=classes)
        else:
            estimator.partial_fit(X, y)

        with raises(ValueError, match=expected_msg):
            estimator.partial_fit(X_bad, y)


def check_sampler_get_feature_names_out(name, sampler_orig):
    tags = sampler_orig._get_tags()
    if "2darray" not in tags["X_types"] or tags["no_validation"]:
        return

    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)

    sampler = clone(sampler_orig)
    X = _enforce_estimator_tags_x(sampler, X)

    n_features = X.shape[1]
    set_random_state(sampler)

    y_ = y
    X_res, y_res = sampler.fit_resample(X, y=y_)
    input_features = [f"feature{i}" for i in range(n_features)]

    # input_features names is not the same length as n_features_in_
    with raises(ValueError, match="input_features should have length equal"):
        sampler.get_feature_names_out(input_features[::2])

    feature_names_out = sampler.get_feature_names_out(input_features)
    assert feature_names_out is not None
    assert isinstance(feature_names_out, np.ndarray)
    assert feature_names_out.dtype == object
    assert all(isinstance(name, str) for name in feature_names_out)

    n_features_out = X_res.shape[1]

    assert (
        len(feature_names_out) == n_features_out
    ), f"Expected {n_features_out} feature names, got {len(feature_names_out)}"


def check_sampler_get_feature_names_out_pandas(name, sampler_orig):
    try:
        import pandas as pd
    except ImportError:
        raise SkipTest(
            "pandas is not installed: not checking column name consistency for pandas"
        )

    tags = sampler_orig._get_tags()
    if "2darray" not in tags["X_types"] or tags["no_validation"]:
        return

    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)

    sampler = clone(sampler_orig)
    X = _enforce_estimator_tags_x(sampler, X)

    n_features = X.shape[1]
    set_random_state(sampler)

    y_ = y
    feature_names_in = [f"col{i}" for i in range(n_features)]
    df = pd.DataFrame(X, columns=feature_names_in)
    X_res, y_res = sampler.fit_resample(df, y=y_)

    # error is raised when `input_features` do not match feature_names_in
    invalid_feature_names = [f"bad{i}" for i in range(n_features)]
    with raises(ValueError, match="input_features is not equal to feature_names_in_"):
        sampler.get_feature_names_out(invalid_feature_names)

    feature_names_out_default = sampler.get_feature_names_out()
    feature_names_in_explicit_names = sampler.get_feature_names_out(feature_names_in)
    assert_array_equal(feature_names_out_default, feature_names_in_explicit_names)

    n_features_out = X_res.shape[1]

    assert (
        len(feature_names_out_default) == n_features_out
    ), f"Expected {n_features_out} feature names, got {len(feature_names_out_default)}"