1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
Metadata-Version: 2.4
Name: img2pdf
Version: 0.6.2
Summary: Convert images to PDF via direct JPEG inclusion.
Home-page: https://gitlab.mister-muffin.de/josch/img2pdf
Download-URL: https://gitlab.mister-muffin.de/josch/img2pdf/repository/archive.tar.gz?ref=0.6.2
Author: Johannes Schauer Marin Rodrigues
Author-email: Johannes Schauer Marin Rodrigues <josch@mister-muffin.de>
License: GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.
Project-URL: Home, https://gitlab.mister-muffin.de/josch/img2pdf
Classifier: License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)
Requires-Python: >=3.5
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: Pillow
Requires-Dist: pikepdf
Dynamic: author
Dynamic: download-url
Dynamic: home-page
Dynamic: license-file
Dynamic: summary
[](https://app.travis-ci.com/josch/img2pdf)
[](https://ci.appveyor.com/project/josch/img2pdf/branch/main)
img2pdf
=======
Lossless conversion of raster images to PDF. You should use img2pdf if your
priorities are (in this order):
1. **always lossless**: the image embedded in the PDF will always have the
exact same color information for every pixel as the input
2. **small**: if possible, the difference in filesize between the input image
and the output PDF will only be the overhead of the PDF container itself
3. **fast**: if possible, the input image is just pasted into the PDF document
as-is without any CPU hungry re-encoding of the pixel data
Conventional conversion software (like ImageMagick) would either:
1. not be lossless because lossy re-encoding to JPEG
2. not be small because using wasteful flate encoding of raw pixel data
3. not be fast because input data gets re-encoded
Another advantage of not having to re-encode the input (in most common
situations) is, that img2pdf is able to handle much larger input than other
software, because the raw pixel data never has to be loaded into memory.
The following table shows how img2pdf handles different input depending on the
input file format and image color space.
| Format | Colorspace | Result |
| ------------------------------------- | ------------------------------------ | ------------- |
| JPEG | any | direct |
| JPEG2000 | any | direct |
| PNG (non-interlaced, no transparency) | any | direct |
| TIFF (CCITT Group 4) | 1-bit monochrome | direct |
| JBIG2 (single-page generic coding) | 1-bit monochrome | direct |
| any | any except CMYK and 1-bit monochrome | PNG Paeth |
| any | 1-bit monochrome | CCITT Group 4 |
| any | CMYK | flate |
For JPEG, JPEG2000, non-interlaced PNG, TIFF images with CCITT Group 4
encoded data, and JBIG2 with single-page generic coding (e.g. using `jbig2enc`),
img2pdf directly embeds the image data into the PDF without
re-encoding it. It thus treats the PDF format merely as a container format for
the image data. In these cases, img2pdf only increases the filesize by the size
of the PDF container (typically around 500 to 700 bytes). Since data is only
copied and not re-encoded, img2pdf is also typically faster than other
solutions for these input formats.
For all other input types, img2pdf first has to transform the pixel data to
make it compatible with PDF. In most cases, the PNG Paeth filter is applied to
the pixel data. For 1-bit monochrome input, CCITT Group 4 is used instead. Only for
CMYK input no filter is applied before finally applying flate compression.
Usage
-----
The images must be provided as files because img2pdf needs to seek in the file
descriptor.
If no output file is specified with the `-o`/`--output` option, output will be
done to stdout. A typical invocation is:
$ img2pdf img1.png img2.jpg -o out.pdf
The detailed documentation can be accessed by running:
$ img2pdf --help
With no command line arguments supplied, img2pdf will read a single image from
standard input and write the resulting PDF to standard output. Here is an
example for how to scan directly to PDF using scanimage(1) from SANE:
$ scanimage --mode=Color --resolution=300 | pnmtojpeg -quality 90 | img2pdf > scan.pdf
Bugs
----
- If you find a JPEG, JPEG2000, PNG or CCITT Group 4 encoded TIFF file that,
when embedded into the PDF cannot be read by the Adobe Acrobat Reader,
please contact me.
- An error is produced if the input image is broken. This commonly happens if
the input image has an invalid EXIF Orientation value of zero. Even though
only nine different values from 1 to 9 are permitted, Anroid phones and
Canon DSLR cameras produce JPEG images with the invalid value of zero.
Either fix your input images with `exiftool` or similar software before
passing the JPEG to `img2pdf` or run `img2pdf` with `--rotation=ifvalid`
(if you run img2pdf from the commandline) or by passing
`rotation=img2pdf.Rotation.ifvalid` as an argument to `convert()` when using
img2pdf as a library.
- img2pdf uses PIL (or Pillow) to obtain image meta data and to convert the
input if necessary. To prevent decompression bomb denial of service attacks,
Pillow limits the maximum number of pixels an input image is allowed to
have. If you are sure that you know what you are doing, then you can disable
this safeguard by passing the `--pillow-limit-break` option to img2pdf. This
allows one to process even very large input images.
Installation
------------
On a Debian- and Ubuntu-based systems, img2pdf can be installed from the
official repositories:
$ apt install img2pdf
If you want to install it using pip, you can run:
$ pip3 install img2pdf
If you prefer to install from source code use:
$ cd img2pdf/
$ pip3 install .
To test the console script without installing the package on your system,
use virtualenv:
$ cd img2pdf/
$ virtualenv ve
$ ve/bin/pip3 install .
You can then test the converter using:
$ ve/bin/img2pdf -o test.pdf src/tests/test.jpg
If you don't want to setup Python on Windows, then head to the
[releases](https://gitlab.mister-muffin.de/josch/img2pdf/releases) section and download the latest
`img2pdf.exe`.
GUI
---
There exists an experimental GUI with all settings currently disabled. You can
directly convert images to PDF but you cannot set any options via the GUI yet.
If you are interested in adding more features to the PDF, please submit a merge
request. The GUI is based on tkinter and works on Linux, Windows and MacOS.

Library
-------
The package can also be used as a library:
import img2pdf
# opening from filename
with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg'))
# opening from file handle
with open("name.pdf","wb") as f1, open("test.jpg") as f2:
f1.write(img2pdf.convert(f2))
# opening using pathlib
with open("name.pdf","wb") as f:
f.write(img2pdf.convert(pathlib.Path('test.jpg')))
# using in-memory image data
with open("name.pdf","wb") as f:
f.write(img2pdf.convert("\x89PNG...")
# multiple inputs (variant 1)
with open("name.pdf","wb") as f:
f.write(img2pdf.convert("test1.jpg", "test2.png"))
# multiple inputs (variant 2)
with open("name.pdf","wb") as f:
f.write(img2pdf.convert(["test1.jpg", "test2.png"]))
# convert all files ending in .jpg inside a directory
dirname = "/path/to/images"
imgs = []
for fname in os.listdir(dirname):
if not fname.endswith(".jpg"):
continue
path = os.path.join(dirname, fname)
if os.path.isdir(path):
continue
imgs.append(path)
with open("name.pdf","wb") as f:
f.write(img2pdf.convert(imgs))
# convert all files ending in .jpg in a directory and its subdirectories
dirname = "/path/to/images"
imgs = []
for r, _, f in os.walk(dirname):
for fname in f:
if not fname.endswith(".jpg"):
continue
imgs.append(os.path.join(r, fname))
with open("name.pdf","wb") as f:
f.write(img2pdf.convert(imgs))
# convert all files matching a glob
import glob
with open("name.pdf","wb") as f:
f.write(img2pdf.convert(glob.glob("/path/to/*.jpg")))
# convert all files matching a glob using pathlib.Path
from pathlib import Path
with open("name.pdf","wb") as f:
f.write(img2pdf.convert(*Path("/path").glob("**/*.jpg")))
# ignore invalid rotation values in the input images
with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg'), rotation=img2pdf.Rotation.ifvalid)
# writing to file descriptor
with open("name.pdf","wb") as f1, open("test.jpg") as f2:
img2pdf.convert(f2, outputstream=f1)
# specify paper size (A4)
a4inpt = (img2pdf.mm_to_pt(210),img2pdf.mm_to_pt(297))
layout_fun = img2pdf.get_layout_fun(a4inpt)
with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg', layout_fun=layout_fun))
# use a fixed dpi of 300 instead of reading it from the image
dpix = dpiy = 300
layout_fun = img2pdf.get_fixed_dpi_layout_fun((dpix, dpiy))
with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg', layout_fun=layout_fun))
# create a PDF/A-1b compliant document by passing an ICC profile
with open("name.pdf","wb") as f:
f.write(img2pdf.convert('test.jpg', pdfa="/usr/share/color/icc/sRGB.icc"))
Comparison to ImageMagick
-------------------------
Create a large test image:
$ convert logo: -resize 8000x original.jpg
Convert it into PDF using ImageMagick and img2pdf:
$ time img2pdf original.jpg -o img2pdf.pdf
$ time convert original.jpg imagemagick.pdf
Notice how ImageMagick took an order of magnitude longer to do the conversion
than img2pdf. It also used twice the memory.
Now extract the image data from both PDF documents and compare it to the
original:
$ pdfimages -all img2pdf.pdf tmp
$ compare -metric AE original.jpg tmp-000.jpg null:
0
$ pdfimages -all imagemagick.pdf tmp
$ compare -metric AE original.jpg tmp-000.jpg null:
118716
To get lossless output with ImageMagick we can use Zip compression but that
unnecessarily increases the size of the output:
$ convert original.jpg -compress Zip imagemagick.pdf
$ pdfimages -all imagemagick.pdf tmp
$ compare -metric AE original.jpg tmp-000.png null:
0
$ stat --format="%s %n" original.jpg img2pdf.pdf imagemagick.pdf
1535837 original.jpg
1536683 img2pdf.pdf
9397809 imagemagick.pdf
Comparison to pdfLaTeX
----------------------
pdfLaTeX performs a lossless conversion from included images to PDF by default.
If the input is a JPEG, then it simply embeds the JPEG into the PDF in the same
way as img2pdf does it. But for other image formats it uses flate compression
of the plain pixel data and thus needlessly increases the output file size:
$ convert logo: -resize 8000x original.png
$ cat << END > pdflatex.tex
\documentclass{article}
\usepackage{graphicx}
\begin{document}
\includegraphics{original.png}
\end{document}
END
$ pdflatex pdflatex.tex
$ stat --format="%s %n" original.png pdflatex.pdf
4500182 original.png
9318120 pdflatex.pdf
Comparison to podofoimg2pdf
---------------------------
Like pdfLaTeX, podofoimg2pdf is able to perform a lossless conversion from JPEG
to PDF by plainly embedding the JPEG data into the pdf container. But just like
pdfLaTeX it uses flate compression for all other file formats, thus sometimes
resulting in larger files than necessary.
$ convert logo: -resize 8000x original.png
$ podofoimg2pdf out.pdf original.png
stat --format="%s %n" original.png out.pdf
4500181 original.png
9335629 out.pdf
It also only supports JPEG, PNG and TIF as input and lacks many of the
convenience features of img2pdf like page sizes, borders, rotation and
metadata.
Comparison to Tesseract OCR
---------------------------
Tesseract OCR comes closest to the functionality img2pdf provides. It is able
to convert JPEG and PNG input to PDF without needlessly increasing the filesize
and is at the same time lossless. So if your input is JPEG and PNG images, then
you should safely be able to use Tesseract instead of img2pdf. For other input,
Tesseract might not do a lossless conversion. For example it converts CMYK
input to RGB and removes the alpha channel from images with transparency. For
multipage TIFF or animated GIF, it will only convert the first frame.
Comparison to econvert from ExactImage
--------------------------------------
Like pdflatex and podofoimg2pf, econvert is able to embed JPEG images into PDF
directly without re-encoding but when given other file formats, it stores them
just using flate compressen, which unnecessarily increases the filesize.
Furthermore, it throws an error with CMYK TIF input. It also doesn't store CMYK
jpeg files as CMYK but converts them to RGB, so it's not lossless. When trying
to feed it 16bit files, it errors out with Unhandled bps/spp combination. It
also seems to choose JPEG encoding when using it on some file types (like
palette images) making it again not lossless for that input as well.
|