File: exam-certsolve.c

package info (click to toggle)
iml 1.0.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,336 kB
  • sloc: sh: 19,923; ansic: 6,900; makefile: 73
file content (248 lines) | stat: -rw-r--r-- 7,298 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/* ---------------------------------------------------------------------
 *
 * -- Integer Matrix Library (IML)
 *    (C) Copyright 2004, 2006 All Rights Reserved
 *
 * -- IML routines -- Version 1.0.1 -- November, 2006
 *
 * Author         : Zhuliang Chen
 * Contributor(s) : Arne Storjohann
 * University of Waterloo -- School of Computer Science
 * Waterloo, Ontario, N2L3G1 Canada
 *
 * ---------------------------------------------------------------------
 *
 * -- Copyright notice and Licensing terms:
 *
 *  Redistribution  and  use in  source and binary forms, with or without
 *  modification, are  permitted provided  that the following  conditions
 *  are met:
 *
 * 1. Redistributions  of  source  code  must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce  the above copyright
 *    notice,  this list of conditions, and the  following disclaimer in
 *    the documentation and/or other materials provided with the distri-
 *    bution.
 * 3. The name of the University,  the IML group,  or the names of its
 *    contributors  may not be used to endorse or promote products deri-
 *    ved from this software without specific written permission.
 *
 * -- Disclaimer:
 *
 * THIS  SOFTWARE  IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,  BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,  INDIRECT, INCIDENTAL, SPE-
 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO,  PROCUREMENT  OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEO-
 * RY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  (IN-
 * CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */


/* this example shows how to call the certified solving function to solve
 * a randomly generated nonsingular system
 */


#include <stdio.h>
#include <stdlib.h>
#include "gmp.h"
#include "iml.h"

long * randomLongMat (const long n, const long m, const long bd);
mpz_t * randomMPMat (const long n, const long m, const mpz_t mp_bd);

int main(void)
{
  long i, j, n, m, certflag, bd, nullcol, ret;
  long *A;
  mpz_t mp_bd, mp_D, mp_DZ;
  mpz_t *mp_B, *mp_N, *mp_NZ;

  /* generate a n x m random left hand side matrix A */
  n = 5; m = 8;  /* set the input matrix dimension */
  bd = 7;  /* any entry e in A satisfying -2^bd < e < 2^bd */
  A = randomLongMat(n, m, bd);
  
  /* generate a n x 1 random right hand side matrix mp_B */
  mpz_init(mp_bd);
  mpz_ui_pow_ui(mp_bd, 2, bd);     /* any entry e in mp_B satisfying */
  mp_B = randomMPMat(n, 1, mp_bd); /* -2^bd < e < 2^bd               */

  /* print the input system */
  fprintf(stdout, "Input Matrices:\n");
  fprintf(stdout, "A:\n");
  for (i = 0; i < n; i++)
    {
      fprintf(stdout, "  ");
      for (j = 0; j < m; j++)
	fprintf(stdout, "%ld\t", A[i*m+j]);
      fprintf(stdout, "\n");
    }
  fprintf(stdout, "\n B:\n");
  for (i = 0; i < n; i++)
    gmp_fprintf(stdout, "  %Zd\n", mp_B[i]);

  /* allocate space for numerator vector mp_N and denominator mp_D */
  mpz_init(mp_D);
  mp_N = (mpz_t *) malloc(m*sizeof(mpz_t));
  for (i = 0; i < m; i++) { mpz_init(mp_N[i]); }

  certflag = 1;  /* compute the certificate vector */

  /* allocate space for certificate vector */
  mpz_init(mp_DZ);
  mp_NZ = (mpz_t *) malloc(n*sizeof(mpz_t));
  for (i = 0; i < n; i++) { mpz_init(mp_NZ[i]); }

  /* solve system AX = mp_B without reduce the solution */
  ret = certSolveLong(certflag, n, m, A, mp_B, mp_N, mp_D, mp_NZ, mp_DZ);

  /* print the computation result */
  if (ret != 3) 
    { 
      if (ret == 1) 
	fprintf(stdout, "\nSystem has more than one solution\n");
      if (ret == 2)
	fprintf(stdout, "\nSystem has a unique solution\n");
      fprintf(stdout, "\nNon-reduced solution: \n");	
      fprintf(stdout, "\n  Denominator: \n");
      gmp_fprintf(stdout, "  %Zd\n", mp_D);
      fprintf(stdout, "\n  Numerator: \n");
      for (i = 0; i < m; i++)
	gmp_fprintf(stdout, "  %Zd\n", mp_N[i]); 
    }
  else
    {
      fprintf(stdout, "\nSystem has no solution\n");
    }

  /* solve system AX = mp_B with solution reduced by a factor of 10 */
  nullcol = 10;
  ret = certSolveRedLong(certflag, nullcol, n, m, A, mp_B, mp_N, mp_D, \
			 mp_NZ, mp_DZ);

  /* print the computation result */
  if (ret != 3) 
    { 
      fprintf(stdout, "\nReduced solution: \n");	
      fprintf(stdout, "\n  Denominator: \n");
      gmp_fprintf(stdout, "  %Zd\n", mp_D);
      fprintf(stdout, "\n  Numerator: \n");
      for (i = 0; i < m; i++)
	gmp_fprintf(stdout, "  %Zd\n", mp_N[i]); 
    }
  else
    {
      fprintf(stdout, "\nSystem has no solution\n");
    }

  /* free the memory */
  for (i = 0; i < n; i++) { mpz_clear(mp_B[i]); mpz_clear(mp_NZ[i]); }
  for (i = 0; i < m; i++) { mpz_clear(mp_N[i]); }
  { free(mp_N); free(mp_B); free(A); }
  { mpz_clear(mp_D); mpz_clear(mp_DZ); }

  return 0;
}




/* generate a n x m random dense signed long matrix with entries lying in
 * (-2^bd, 2^bd) 
 */
long *
randomLongMat (const long n, const long m, const long bd)
{
  long i, j;
  mpz_t mp_rand, mp_sign;
  gmp_randstate_t state;
  unsigned long seed;
  FILE *devrandom;
  long *M;
  static unsigned long inc = 0;

  M = (long *) malloc (n * m * sizeof (long));
  mpz_init (mp_sign);
  mpz_init (mp_rand);
  gmp_randinit_default (state);
  seed = 387439;


  /* generate random seed using /dev/random */
  if ((devrandom = fopen ("/dev/urandom", "r")) != NULL)
    {
      fread (&seed, sizeof (seed), 1, devrandom);
      fclose (devrandom);
    }
  seed += inc;
  inc += 1;
  gmp_randseed_ui (state, seed);


  for (i = 0; i < n * m; i++)
    {
      mpz_urandomb (mp_rand, state, bd);
      mpz_urandomb (mp_sign, state, 1);
      if (mpz_sgn (mp_sign) == 0)
	mpz_neg (mp_rand, mp_rand);
      M[i] = mpz_get_si (mp_rand);
    }
  mpz_clear (mp_rand);
  gmp_randclear (state);
  mpz_clear (mp_sign);
  return M;
}

/* generate a n x m random dense matrix of type mpz_t with entries lying in
 * (-2^bd, 2^bd) 
 */
mpz_t *
randomMPMat (const long n, const long m, const mpz_t mp_bd)
{
  long i, j;
  mpz_t mp_rand, mp_sign, * mp_B;
  gmp_randstate_t state;
  unsigned long seed;
  FILE *devrandom;
  static unsigned long inc = 0;

  mp_B = (mpz_t *) malloc(n*m*sizeof(mpz_t));
  mpz_init (mp_sign);
  mpz_init (mp_rand);
  gmp_randinit_default (state);
  seed = 387439;


  /* generate random seed using /dev/random */
  if ((devrandom = fopen ("/dev/urandom", "r")) != NULL)
    {
      fread (&seed, sizeof (seed), 1, devrandom);
      fclose (devrandom);
    }
  seed += inc;
  inc += 1;
  gmp_randseed_ui (state, seed);


  for (i = 0; i < n * m; i++)
    {
      mpz_urandomm (mp_rand, state, mp_bd);
      mpz_urandomb (mp_sign, state, 1);
      if (mpz_sgn (mp_sign) == 0)
	mpz_neg (mp_rand, mp_rand);
      mpz_init_set(mp_B[i], mp_rand);

    }
  mpz_clear (mp_rand);
  gmp_randclear (state);
  mpz_clear (mp_sign);
  return mp_B;
}