1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#include <immer/box.hpp>
#include <immer/flex_vector.hpp>
#include <immer/map.hpp>
#include <immer/set.hpp>
#include <immer/table.hpp>
#include <immer/vector.hpp>
#include <catch2/catch_test_macros.hpp>
#include <array>
#include <cstdint>
// 16-byte alignment seems to happen by default for box, map, set, is
// only broken by 32, but that incurs over-alignment which requires a custom
// allocator anyway...
constexpr unsigned alignment = 16;
// just in case alignment issues only show up for the non-first element
constexpr int N = 4;
// A structure with the same alignment requirements as Eigen's vectorized types
// (which is what originally exposed this issue)
struct AlignConstrainedType
{
alignas(alignment) std::array<double, 4> buf = {{0, 0, 0, 0}};
AlignConstrainedType() = default;
// For the set case
AlignConstrainedType(double k)
: buf{{k, k, k, k}} {};
// For the set case
bool operator==(const AlignConstrainedType& o) const
{
return o.buf == buf;
}
// https://stackoverflow.com/a/42093940
bool is_aligned() const
{
const auto rem = reinterpret_cast<intptr_t>(this) % alignment;
return !rem;
}
};
static_assert(alignof(AlignConstrainedType) == alignment, "bad alignment");
static_assert(alignof(AlignConstrainedType) <= alignof(max_align_t),
"bad size alignment");
// For the set case
namespace std {
template <>
struct hash<AlignConstrainedType>
{
size_t operator()(const AlignConstrainedType& v) const
{
return v.buf[0] + v.buf[1] + v.buf[2] +
v.buf[3]; // terrible but valid hash
};
};
} // namespace std
// For the table case
struct TableElem
{
int id;
AlignConstrainedType value;
};
static_assert(alignof(TableElem) == alignment, "bad alignment");
TEST_CASE("Sanity check: std::vector")
{
std::vector<AlignConstrainedType> v;
for (int i = 0; i < N; ++i) {
v.emplace_back();
}
for (const auto& elem : v) {
CHECK(elem.is_aligned());
}
}
TEST_CASE("Simple alignment, vector")
{
immer::vector<AlignConstrainedType> v;
for (int i = 0; i < N; ++i) {
v = std::move(v).push_back({});
}
for (const auto& elem : v) {
CHECK(elem.is_aligned());
}
}
TEST_CASE("Simple alignment, vector of box")
{
// Checking many boxes just in case one of them happens to align
immer::vector<immer::box<AlignConstrainedType>> v;
for (int i = 0; i < N; ++i) {
v = std::move(v).push_back({});
}
for (const auto& elem : v) {
CHECK(elem->is_aligned());
}
}
TEST_CASE("Simple alignment, flex_vector")
{
immer::flex_vector<AlignConstrainedType> v;
for (int i = 0; i < N; ++i) {
v = std::move(v).push_back({});
}
for (const auto& elem : v) {
CHECK(elem.is_aligned());
}
}
TEST_CASE("Simple alignment, set")
{
immer::set<AlignConstrainedType> v;
for (int i = 0; i < N; ++i) {
v = std::move(v).insert({static_cast<double>(i)});
}
for (const auto& elem : v) {
CHECK(elem.is_aligned());
}
}
TEST_CASE("Simple alignment, map")
{
immer::map<int, AlignConstrainedType> v;
for (int i = 0; i < N; ++i) {
v = std::move(v).insert({i, AlignConstrainedType{}});
}
for (const auto& elem : v) {
CHECK(elem.second.is_aligned());
}
}
TEST_CASE("Simple alignment, table")
{
immer::table<TableElem> v;
for (int i = 0; i < N; ++i) {
v = std::move(v).insert({i, AlignConstrainedType{}});
}
for (const auto& elem : v) {
CHECK(elem.value.is_aligned());
}
}
|