

Copyright 2017-2024 NXP

Code-Signing Tool
User’s Guide

Rev. 3.4.1

05/2024

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

http://www.freescale.com/
http://www.freescale.com/support

Copyright 2017-2024 NXP iii

Code-Signing Tool User’s Guide, Rev. 3.4.1

Contents

About This Book .. vi

Audience ... vi

Scope .. vi

Organization ... vi

Revision History ... vii

Conventions ... ix

Definitions, Acronyms, and Abbreviations ... ix

References .. x

Additional Documents ... x

1 Introduction .. A-1

1.1 Code Signing Components ... A-1

1.1.1 Secure components .. A-1

1.1.1.1 Secure components API ... A-4

1.1.2 CST ... A-4

2 Installation .. A-7

2.1 CST Package Contents and Installation .. A-8

2.1.1 Linux System Requirements ... A-8

2.1.2 Windows System Requirements .. A-8

2.1.3 Unpacking the Files ... A-9

3 Key and Certificate Generation ... A-11

3.1 Generating HAB4 Keys and Certificates .. A-12

3.1.1 HAB4 PKI Tree .. A-12

3.1.2 Running the hab4_pki_tree script Example .. A-13

3.1.2.1 Running the hab4_pki_tree script in interactive mode A-14

3.1.2.2 Running the hab4_pki_tree script in CLI mode ... A-16

3.1.3 Generating HAB4 SRK tables and Efuse Hash .. A-17

3.1.4 Programming the SRK Hash Value to Efuses .. A-19

3.1.5 Adding a Key to a HAB4 PKI Tree .. A-19

3.1.5.1 Running the add_key script in interactive mode ... A-19

3.1.5.2 Running the add_key script in CLI mode .. A-21

3.2 Generating AHAB Keys and Certificates ... A-22

3.2.1 AHAB PKI Tree .. A-22

3.2.2 Running the ahab_pki_tree script Example .. A-23

3.2.2.1 Running the ahab_pki_tree script in interactive mode A-24

3.2.2.2 Running the ahab_pki_tree script in CLI mode ... A-26

iv Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

3.2.3 Generating AHAB SRK tables and Efuse Hash .. A-27

3.2.4 Programming the SRK Hash Value to Efuses .. A-29

3.2.5 Adding a Key to an AHAB PKI Tree... A-30

4 CST Usage .. A-31

4.1 CST (Code Signing Tool).. A-31

4.2 SRK Tool ... A-33

4.2.1 SRK Tool Usage for HAB4 ... A-34

4.2.2 SRK Tool Usage for AHAB .. A-36

4.3 MAC Dump Tool ... A-38

5 CSF Description Language ... A-39

5.1 Overview ... A-39

5.2 CSF Commands .. A-40

5.2.1 Header ... A-40

5.2.1.1 Header Examples ... A-41

5.2.2 Install SRK ... A-42

5.2.2.1 Install SRK Examples .. A-43

5.2.3 Install CSFK (HAB only) ... A-43

5.2.3.1 Install CSFK Examples ... A-43

5.2.4 Install NOCAK (HAB4 only) ... A-43

5.2.4.1 Install NOCAK Examples .. A-44

5.2.5 Authenticate CSF (HAB only) .. A-44

5.2.5.1 Authenticate CSF Examples .. A-45

5.2.6 Install Key (HAB only) ... A-45

5.2.6.1 Install Key Examples ... A-46

5.2.7 Authenticate Data ... A-46

5.2.7.1 Authenticate Data Examples ... A-48

5.2.8 Install Secret Key ... A-48

5.2.8.1 Install Secret Key Examples .. A-49

5.2.9 Decrypt Data (HAB only) .. A-49

5.2.9.1 Decrypt Data Examples .. A-50

5.2.10 NOP (HAB only) .. A-51

5.2.10.1 NOP Example .. A-51

5.2.11 Set Engine (HAB only) .. A-51

5.2.11.1 Set Engine Example .. A-52

5.2.12 Init (HAB only) ... A-52

5.2.12.1 Init Example ... A-52

5.2.13 Unlock (HAB only).. A-52

5.2.13.1 Unlock Examples .. A-54

Copyright 2017-2024 NXP v

Code-Signing Tool User’s Guide, Rev. 3.4.1

5.2.14 Install Certificate (AHAB only) .. A-54

5.2.14.1 Install Certificate Examples ... A-55

5.3 CSF Examples ... A-55

5.3.1 HAB4 CSF Example ... A-55

5.3.2 HAB4 CSF Fast Authentication Example ... A-56

5.3.3 HAB4 CSF Example for Encrypted Boot .. A-57

5.3.4 AHAB CSF Example .. A-58

5.3.5 AHAB CSF with Certificate Example ... A-58

5.3.6 AHAB CSF Example for encrypted boot .. A-59

Appendix A CST Architecture .. A-60

A.1 Customizing the Back End .. A-61

A.1.1 Back End API ... A-61

A.1.1.1 gen_sig_data() .. A-61

A.1.1.2 gen_auth_encrypted_data() .. A-61

A.1.1.3 read_certificate() .. A-62

A.2 Front End References to Code Signing Keys ... A-63

A.3 Using Code-Signing Tool with Hardware Security Module A-63

vi Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

About This Book

This manual, the Code-Signing Tool User’s Guide, provides the details necessary to install,

configure, and run the code-signing tool (CST).

Audience

This document provides installation instructions and describes the use of the code signing tools for

administrators and engineers performing codes signing for the NXP High Assurance Boot (HAB)

and Advanced High Assurance Boot (AHAB) feature.

Scope

This document focuses on the use of the CST to generate keys, certificates, HAB4/AHAB SRK

tables, SRK hash values and generating data which include digital signatures. The use of the NXP

Manufacturing tool to load images and to burn e-fuses are beyond the scope of this document.

Organization

The remainder of this manual is divided into sections according to the main HAB Code Signing

Tool user tasks:

• Section 1, “Introduction,” describes the background of the code-signing tool and the goals

of the procedures in later sections.

• Section 2, “Installation” describes the steps to install the Code-Signing Tool (CST)

program files.

• Section 3, “Key and Certificate Generation” details the steps to generate signing keys and

certificates for the HAB Version 4 and AHAB.

• Section 4, “CST Usage” describes how to use the CST client command line interface.

• Section 5, “CSF Description Language” provides CST description language details

required to create a CSF description file.

One appendix also included:

• Appendix A, “CST Architecture” presents details about CST implementation and

customization options.

Copyright 2017-2024 NXP vii

Code-Signing Tool User’s Guide, Rev. 3.4.1

Revision History

Version Date Change Description

1.0 11/15/2011 - Initial Version

2.0 11/09/2012 - Bug fixes and other updates

2.1 4/15/2013 - Add Support for HAB4 fast authentication

2.2 10/14//2014 - Add note on Linux RNG dependency

- Add Appendix B containing details on replacing the CST Back End

- Corrected CA flag documentation

2.3 3/30/2015 - Bug fixes related to encrypted images

2.3.1 7/1/2015 - Fix for 64-bit version of srktable

2.3.2 3/15/2016 - Added support for manufacturing protection

- Changed input from STDIN to command line argument

- Made RNG unlock automatic only for CAAM

2.3.3 11/14/2017 - Added support for MS Windows

- Removed support for several commands:

Write Data

Clear Mask

Set Mask

Check Clear/Set

Set MID

3.0.0 04/04/2018 - Added support for AHAB

3.0.1 05/11/2018 - Bug fixes related to Windows support

3.1.0 08/2018 - Added OpenSSL 1.1.0 support

- Added ECDSA support for HAB4 (Only available in HAB 4.5.0)

- Fixed encrypted boot support

- Added convlb.exe to work-around line break limitation in Windows

- Added HSM backend

- Added HAB4 log parser tool

- Added HAB4 CSF parser tool

- Added HAB4 SRKTool script

3.2.0 04/2019 - Removed HAB3 support

- Added encrypted boot support for AHAB

- Added CST source code

viii Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

3.3.0 12/2019 - Added support for MacOS

- Added AHAB signature block parser tool

3.3.1 07/2020 - CST tool binaries built using OpenSSL 1.1.1

- CST tool binaries support Encrypted Boot by default

- Added HAB4 log parser tool for Windows and MacOS

3.3.2 04/2023 - Added new backend supporting HAB and AHAB signing using

production keys stored on Hardware Token

- Removed HSM backend

- Updated srktool to support sha256 fuse array

3.4.0 12/2023 - Transitioned to OpenSSL 3, following OpenSSL 1.1.1 End Of Life

in Sept 2023. No more public security fixes for 1.1.1 post that date

Compiled with OpenSSL 3.2.0 for enhanced security and features

- Simplified the PKCS#11 backend, eliminating redundant code

- Introduced Dockerfile.hsm for experimenting with the PKCS#11

backend.

- PKCS#11 generation scripts now located in the 'keys' folder

- Removed repetitive PIN requests in PKI generation scripts

- The backend now supports RSA PSS

- Improved build system for efficiency and ease of use

- Updated Dockerfile; relocated to top folder alongside Makefile for

easier access and build management

- Added support for 32bit Linux in the hab_log_parser tool

- Removed OSX binaries; however, the build system and sources

still support it

- Added BUILD.md with instructions for CST building using Docker

- Code-Signing Tool User's Guide updated with instructions on using

the PKCS#11 backend and notes about i.MX9x devices

3.4.1 05/2024 - Add mac_dump tool to work-around issue with HABv4 Encrypted

boot failure.

Copyright 2017-2024 NXP ix

Code-Signing Tool User’s Guide, Rev. 3.4.1

Conventions

Use this section to name, describe, and define any conventions used in the book. This document

uses the following notational conventions:

• Courier monospaced type indicates commands, command parameters, code examples,

expressions, datatypes, and directives.

• Italic type indicates replaceable command parameters.

• All source code examples are in C.

Definitions, Acronyms, and Abbreviations

The following list defines the acronyms and abbreviations used in this document.

AES Advanced Encryption Standard

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CA Certificate Authority

CCM Counter with CBC-MAC

CSF Command Sequence File

CMS Cryptographic Message Syntax

CST Code-Signing Tool

DEK Data Encryption Key

DER ASN.1 Distinguished Encoding Rules

ELE EdgeLock secure Enclave

HAB High Assurance Boot

HAB4 High Assurance Boot Version 4

AHAB Advanced High Assurance Boot

HSM Hardware Security Module

MMU Memory Management Unit

OS Operating System

PEM Privacy Enhanced Mail

PKI Public Key Infrastructure

PKCS Public Key Cryptography Standards

RVT ROM Vector Table

RSA Public key encryption algorithm created by Rivest, Shamir and Adleman

SA Signature Authority

SHA Secure Hash Algorithm

SoC System on Chip

SRK Super Root Key

x Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

SW Software

UID Unique ID — a field in the processor and CSF identifying a device or

group of devices

References

The following sources were referenced to produce this book:

1. Open Secure Socket Layer (OpenSSL), http://www.openssl.org.

2. RFC 3369: Cryptographic Message Syntax (CMS), http://www.ietf.org/rfc/rfc3852.txt

3. RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile, http://www.ietf.org/rfc/rfc5280.txt

4. RSA Private-Key Cryptography Standard #8 (PKCS #8) - Private-Key Information Syntax

Standard, version 1.2, RSA Laboratories, http://www.rsa.com/rsalabs.

5. WAP Certificate and CRL Profiles (WAP-211-WAPCert), 22-May-2001,

http://www.openmobilealliance.org

6. RFC 3610: Counter with CBC-MAC (CCM), http://www.ietf.org/rfc/rfc3610.txt

7. PKCS#11 wrapper library, 12/2023. https://github.com/OpenSC/libp11

8. The p11-kit web pages, 12/2023. http://p11-glue.freedesktop.org/p11-kit.html

9. The PKCS #11 URI Scheme, 12/2023. https://tools.ietf.org/html/rfc7512

Additional Documents

The following documents provide additional information on secure boot with NXP processors

8. High Assurance Boot Version 4 Application Programming Interface Reference Manual

(HAB4_API). Included as part of the NXP Reference CST release.

9. AN4547: Secure Boot on i.MX25, i.MX35, and i.MX51 using HABv3,

http://www.nxp.com

10. AN4555: Secure Boot with i.MX28 HAB v4,

http://www.nxp.com

11. AN4581: i.MX Secure Boot on HABv4 Supported Devices ,

 http://www.nxp.com

12. AN12312: Secure Boot on AHAB Supported Devices

http://www.nxp.com

13. i.MX 6 DQ/DQP/SDL/SX/UL/ULL/ULZ, i.MX 7 SD/ULP, i.MX 8

MQ/MM/MN/MP/ULP/QXP/DXP/QM/DM/DXL, i.MX 9x Security Reference Manual

http://www.nxp.com

http://www.ietf.org/rfc/rfc3610.txt
https://github.com/OpenSC/libp11
http://p11-glue.freedesktop.org/p11-kit.html
https://tools.ietf.org/html/rfc7512

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-1 NXP

1 Introduction

The Code Signing Tool provides support to sign and encrypt images for use with HAB and AHAB

enabled NXP processors.

1.1 Code Signing Components

The secure boot feature using HAB or AHAB included in many NXP processors is based on Public

Key Infrastructure. The secure systems consist of two main components:

• The HAB library sub-component of NXP Processor Boot ROMs or the AHAB secure sub-

system including a dedicated ARM core, ROM and FW.

• The CST

1.1.1 Secure components

The HAB library is a sub-component of the boot ROM and the AHAB component is a complete

sub-system on select NXP processors. They are responsible for verifying the digital signatures

included as part of the product software and ensures that, when the processor is configured as a

secure device, no unauthenticated code is allowed to run. On NXP processors supporting the

feature, encrypted boot may also be used to provide image cloning protection and, depending on

the use case, image confidentiality. The secure components cannot only be used to authenticate

the first stage of the boot chain, but the other components of the boot chain as well. The use of

HAB or AHAB is bootloader and OS agnostic. An example is shown in Figure 1 and 2 for a generic

boot chain.

Figure 1. Generic Boot Flow using HAB

A-2 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

Figure 2. Generic Boot Flow using AHAB (SECO ROM & FW)

The secure boot process starts with the ROM reading eFuses to determine the security

configuration of the SoC and the type of the boot device. The ROM then loads the images to

memory. For HAB, the bootloader image contains both the bootloader itself in addition to:

commands that the HAB uses to verify the image, digital signature data and public key certificate

data which are collectively called Command Sequence File (CSF) data. The CSF data is generated

off-line using the Code-Signing Tool (CST) which is introduced in the next section. For AHAB,

the boot image contains the user-provided images (for the user programmable cores) in addition

to a container header and a signature block that the AHAB uses to verify the images, the digital

signatures and public key certificate data. The container header is generated off-line, using the

mkimage tool that is not described as part of this document. The signature block is generated off-

line by the Code Signing Tool (CST) which is introduced in the next section. Once ROM has

completed loading the images, execution is then passed to the secure components which will verify

the signatures. If signature verification fails, execution is not allowed to leave the ROM for

securely configured SoCs. The exact behavior on signature verification failure at the ROM stage

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-3 NXP

is SoC dependent. If all signatures, including image decryption, are successful then execution is

passed to the next images which can perform similar steps to verify the next boot stage by calling

back into the secure API.

NOTE

The ROM, HAB and AHAB cannot be changed so they can be

considered as trusted software components. This allows the use of

ROM, HAB and AHAB to establish a secure boot chain.

HAB and AHAB require the use of physical addresses, so if an MMU and a Level 2 cache are

enabled within the bootloader stage then the address translation must be idempotent. This ensures

that all boot components provide HAB or AHAB with physical addresses. Once all boot

components have been verified, HAB and AHAB are no longer needed and the MMU and Layer

2 cache may be re-configured as required by the Operating System (OS).

The ROM/HAB/AHAB library integration also provides access to the APIs that boot components

outside the ROM may call for image verification. The exact implementation of API is SoC

dependent so please refer to the Reference Manual for the NXP processor you are using for specific

details.

There are two major versions of the secure components that exist on NXP processors: HAB

Version 4 (HAB4) and AHAB version. HAB version supports the flow shown in Figure 1. AHAB

version supports the flow shown in Figure 2. HAB4 and AHAB use public key signature

verification to ensure that product code is authentic. There some differences between these

versions which are highlighted in Table 1 below. Please see the reference manual for the NXP

processor you are using to determine which version of HAB or AHAB is supported.

Table 1

Feature HAB4 AHAB

Image Authentication Yes Yes

Super Root Key Multiple, revocable, fused hash Multiple, revocable, fused hash

Public Key Type ECC-P256, ECC-P384, ECC-P521,

RSA-1024, RSA-2048, RSA-3072,

RSA-4096 (ECC in i.MX 8 MP only)

ECC-P256, ECC-P384, ECC-P521,

RSA-2048, RSA-3072, RSA-4096

Certificate Format X.509 NXP proprietary

Signature Format CMS (PKCS#1)

CMS (ECDSA) (HAB 4.5 and later)

ECDSA (raw format, no DER

encoding), PKCS#1

Hash Algorithm SHA-256 SHA-256, SHA-384, SHA-512

Image Decryption Yes (HAB4.1 and later) Yes (SECO FW v2.3.0 and later,
ELE 0.0.10 and later)

Image Decryption Algorithm AES-CCM AES-CBC

Image Decryption Key Blob

Algorithm

NXP proprietary NXP proprietary

A-4 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

Wrapped Key Format CAAM Blob - Secret keys stored in

CAAM secure RAM partition

CAAM Blob – Secret keys stored in

CAAM secure RAM partition

Secret Key Type AES-128/192/256 AES-128/192/256

Decryption Algorithm AES-CCM - authenticated

decryption

AES-CCM – authenticated

decryption

Unlock Commands Field Return Fuse

Revocation Fuses

Secure JTAG

etc.

Not applicable

1.1.1.1 Secure components API

In order to allow boot components outside the ROM to continue the secure boot chain it must be

possible for these components to call back into the HAB or AHAB. There are two versions of the

API, one for HAB4 and one for AHAB.

Information on the HAB4 API can be found in the HAB4 API Reference Manual.

Information on the AHAB API can be found in the i.MX8 QXP/QM SECO API or the i.MX8ULP

/ i.MX9 ELE API document.

1.1.2 CST

There are several participants involved when performing cryptographic signatures as illustrated in

Figure 2. These include:

• A Certificate Authority (CA). The CA is responsible for protecting the top-level CA key

and for certifying lower level code signing keys.

• A Signature Authority (SA). The SA is responsible for performing the act of code signing.

• A Manufacturer. The Manufacturer is responsible for requesting digital signatures across

product software.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-5 NXP

Figure 2. Generic Code Signing Participants

The CST is a set of command line tools residing on a host computer which serves as both the

Certificate Authority (CA) and Signature Authority (SA) allowing manufacturers to control all

aspects of the signing process.

The CST can establish a PKI tree of keys and certificates (CA function) needed for code signing

in addition to generating digital signatures across data provided by a user (SA Function). The

signatures generated by the CST can then be included as part of the end-product software image.

The signatures are then verified by the secure components on the NXP processor at boot time.

Figure 3 shows how the CST is used to generate data which includes signatures, certificates and

CSF commands (HAB only) the secure components in ROM will use to validate the product

software. The CST takes two main inputs:

• A binary image or image(s) of the product software to be signed.

• A Command Sequence File (CSF). The CSF description file provides the instructions to

the CST on what areas of the binary image need to be signed, which keys to sign the image

with, etc.

The CST takes these inputs and generates binary data, which includes signatures, certificates and

CSF commands (HAB only) that can then be attached to the product software to create a signed

image. This User Guide focuses on the details of how to generate the key, certificates, CSF

description files and how to run the CST executable.

A-6 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

Figure 3. Code-Signing Tool - Digital Signatures

On certain NXP processors supporting HAB4 or AHAB, encrypted boot may also be used. Figure

4 shows the encrypted boot process with the CST. The encrypted boot case is very similar to

generating signed images, but there are two main differences. The first is that the binary image is

both decrypted and authenticated using a symmetric key rather than signed using a private

asymmetric key. The second is the CST generates a one-time AES Data Encryption Key (DEK)

which is used to encrypt the image. Note that when performing an encrypted boot digital signatures

are still required, see Section 5.3.4 for an example CSF description file. The DEK is independent

of the public keys used for code signing. The DEK output from the CST is protected but is not in

the final form required for an encrypted boot on NXP processors.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-7 NXP

Figure 4. Code Signing Tool - Encrypted Boot

A cryptographic blob of the DEK must be created during the OEM manufacturing stages on each

processor and then attached to the image on the boot device. The reason for this is the DEK blob

is created using the device unique key embedded into the NXP processor which is only readable

by the on-chip encryption engine. The DEK is common to all ICs using the same encrypted image

but the DEK blob is unique per IC. Figure 5 provides an overview of DEK blob creation. The

remaining details on DEK blob creation are beyond the scope of the CST and this document.

Figure 5. DEK Blob Creation

2 Installation

This section describes the installation of the CST code-signing client files.

NXP PROCESSOR

A-8 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

2.1 CST Package Contents and Installation

The CST is delivered in an archive file, which contains a version for Linux and a version for

Windows. For MacOS, the CST is no longer released with supported binaries, but the build system

support for the MacOS target is retained in the source code. The archive contains a

Software_Content_Register_CST.txt file that lists the entire contents of the archive.

2.1.1 Linux System Requirements

The following checklist can be used to ensure appropriate software is available for the Linux

CST. Check with your system administrator if any components are missing.

Table 2.a. Linux — CST System Requirements Checklist

Required Component

❑
A Linux distribution: Ubuntu 18.04 through 22.04 known to work although other

distributions should also work but have not been formally tested.

 • Check by viewing information shown on Linux login screen

❑
OpenSSL 3.2.0 is recommended. Versions preceding it are also verified to be

compatible with this build.

Required for included scripts to generate public key infrastructure (PKI).
 • Check by running "openssl version"

 • Available at http://www.openssl.org/

NOTE

The NXP Reference CST uses the Linux OS to generate random numbers for use as

keys for encrypted boot. Given this, the Linux host on which the reference CST is

installed MUST have good sources of entropy. Generally, this requires multiple

entropy sources such as keyboard input, mouse input, network packet arrival times etc.

Running the CST without these sources of entropy will cause lengthy delays in seeding

the Linux random number generator.

2.1.2 Windows System Requirements

The following checklist can be used to ensure appropriate software is available for the MS

Windows CST. Check with your system administrator if any components are missing.

Table 2.b. Windows — CST System Requirements Checklist

Required Component

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-9 NXP

❑
Windows 7 32bit and Windows 10 64bit are known to work.

 • Check by viewing information shown on system panel

❑
OpenSSL 3.2.0 is recommended. Versions preceding it are also verified to be

compatible with this build.

Required for included scripts to generate public key infrastructure (PKI).
 • Check by running "openssl version"

Available at http://www.openssl.org/

Note: OpenSSL 1.1.1 can be used with the restriction to convert the password file
(“key_pass.txt”) to Unix format. The small tool convlb.exe that can be found within

the keys directory does this conversion when using the script for generating the keys.

Note: it may happen that the OpenSSL Windows installer does not set the PATH

environment variable. Please make sure this variable is set to the OpenSSL bin

directory.

NOTE

The NXP Reference CST uses the Windows OS to generate random numbers for use as

keys for encrypted boot. Given this, the Windows host on which the reference CST is

installed MUST have good sources of entropy. Generally, this requires multiple entropy

sources such as keyboard input, mouse input, network packet arrival times etc. Running

the CST without these sources of entropy will cause lengthy delays in seeding the

Windows random number generator.

2.1.3 Unpacking the Files

Unpack the CST archive to the desired installation point. The following is an example for Linux

and assumes that the client archive was saved in a directory named /home/<username>/cst:

$ cd /home/<username>/cst/
$ tar -zxvf <release package name>.tgz

This creates the following directories:

ca/

Contains the OpenSSL configuration files. These configuration files are

used when generating signing keys and certificates with the OpenSSL

command line tool.

code/

The /ahab_signature_block_parser directory contains the sources and

headers to build a parser for evaluating AHAB images and provide signature

details. More detailed information can be found in the README file located

in the directory.

The /cst directory contains the sources and headers to build CST. More

detailed information can be found in the Release Notes.

http://www.openssl.org/

A-10 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

The /hab_csf_parser directory contains the sources and headers

necessary to build a parser of the HAB CSF binaries generated by CST.

More detailed information can be found in the README file located in the

directory.

The /hab_srktool_scripts directory contains scripts that mimic the

SRKTOOL executable behavior. More detailed information can be found in

the README file located in the directory.

crts/

Contains the public key certificates used for signing. Initially this directory

is empty.

docs/

Contains the CST user guide and HAB4 API guide.

keys/

Contains the private key files used for signing. Initially this directory

contains scripts to generate the PKI tree:

hab4_pki_tree.sh — Use to generate a series of keys and certificates on

a Linux or MacOS machine for use with an NXP processor supporting

HAB4.

hab4_pki_tree.bat — Use to generate a series of keys and certificates

on a Windows machine for use with an NXP processor supporting

HAB4.

ahab_pki_tree.sh — Use to generate a series of keys and certificates on

a Linux or MacOS machine for use with an NXP processor supporting

AHAB.

ahab_pki_tree.bat — Use to generate a series of keys and certificates

on a Windows machine for use with an NXP processor supporting

AHAB.add_key.sh — Use to add new keys to an existing HAB4 PKI

tree.

convlb.exe — Use to convert the line breaks of Windows text files to

Unix format. Use to work around OpenSSL 1.0.2 limitations with file

handling.

linux32/

Contains the CST executables for 32-bit Linux OS:

bin/cst — The CST executable used to sign code

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-11 NXP

bin/srktool— Generate SRK table and e-fuse files for HAB4 or

AHAB.

bin/hab_log_parser — Parse HAB persistent memory dumps and print

out the HAB events.

bin/mac_dump — Dump the MAC data location and size from a HABv4

 CSF binary data file.

linux64/

Contains the CST executables for 64-bit Linux OS:

bin/cst — The CST executable used to sign code

bin/srktool— Generate SRK table and e-fuse files for HAB4 or

AHAB.

bin/hab_log_parser — Parse HAB persistent memory dumps and print

out the HAB events.

bin/mac_dump — Dump the MAC data location and size from a HABv4

 CSF binary data file.

mingw32/

Contains the CST executables for MS Windows:

bin/cst.exe — The CST executable used to sign code

bin/srktool.exe— Generate SRK table and e-fuse files for HAB4 or

AHAB.

bin/mac_dump.exe — Dump the MAC data location and size from a

HABv4

 CSF binary data file.

/lib — Contains library files needed for replacing the CST backend

implementation.

Once the archive is unpacked, there are no additional installation steps required in order to use the

CST.

3 Key and Certificate Generation

Once the CST installation is complete. The first step in signing code is generating private keys and

certificates. The CST is not delivered with keys or certificates since these will be different for each

manufacturer and perhaps even each product line.

A-12 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

The NXP reference CST generates keys by making use of the OpenSSL command line tool and a

set of shell scripts for Linux. This makes OpenSSL the CA component shown in Figure 2. The

provided scripts illustrate how to generate a PKI tree of keys and certificates. There are three sets

of scripts generating an initial PKI tree. One for HAB4 and one for AHAB. The reason for this is

that the PKI tree structure is different for each version as well as the final public key certificate

format. HAB4 and AHAB requires X.509 [3] format certificates. The provided key and certificate

generation scripts are for reference to illustrate how they should be generated with OpenSSL. Users

may update these scripts or replace these scripts with something equivalent if required.

CAUTION
The NXP reference CST requires a one-to-one correspondence between the

key names in the /keys directory and the certificates in /crts directory.

The convention is <keyname>_key.<ext> for keys and <keyname>_crt.<ext>

for certificates. For example, a key named

keys/SRK1_sha256_2048_65537_v3_ca_key.der must have a corresponding

certificate crts/SRK1_sha256_2048_65537_v3_ca_crt.der.

3.1 Generating HAB4 Keys and Certificates

This section covers only key and certificate generation for HAB4. Note that when making use of

the encrypted boot feature digital signatures are still required. Data structures required by ROM

and HAB cannot be encrypted but still must be covered by a valid digital signature. Also, a new

symmetric key is dynamically generated by the CST for each Install Secret Key/Decrypt Data

command pair. These symmetric keys are an output of the CST and encrypted with a supplied

public key. See Section 5.3.4 for an example encrypted boot CSF file.

3.1.1 HAB4 PKI Tree

The tree structure for HAB4 generated by the hab4_pki_tree.sh script for Linux. This script

will generate a HAB4 PKI tree as shown in Figure 11 and is in the /keys directory of the NXP

Reference CST.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-13 NXP

Figure 11. HAB4 PKI Tree

A HAB4 PKI tree consists of the following keys and certificates:

• CA key: is the top most key and is only used for signing SRK certificates.

• SRK: is the root key for HAB code signing keys. The cryptographic hash of a table of SRK

is burned to one-time programmable efuses to establish a root of trust. Only one of the

SRKs in the table may be selected for use on the NXP processor per reset cycle. The

selection of which SRK to use is a parameter within the Install Key CSF command (see

Section 5.2.2, “Install SRK”). The SRK may only be used for signing certificate data of

subordinate keys.

• CSF: is a subordinate key of the SRK and is used to verify the signature across CSF

commands.

• IMG: is a subordinate key of the SRK key and is used to verify signatures across product

software.

• NOTE: The CSF and IMG keys are not generated for a fast authentication PKI tree

The hab4_pki_tree script generates a basic tree in which up to a maximum of four SRKs may be

generated. For each SRK a single CSF key and IMG key are also generated. Additional keys may

be added to the tree later using a separate script. It is also possible to replace the OpenSSL and the

hab4_pki_tree script with an alternative key generation solution, but this is beyond the scope of

this document. If the key generation scheme described here is replaced a new scheme must follow

these constraints:

• Keys must be in PKCS#8 format

• Certificates must be in X.509 format following the certificate profile specified by HAB4.

Keys and Certificates must follow the file naming convention specified in Section 3,

“HAB Key and Certificate Generation”.

3.1.2 Running the hab4_pki_tree script Example

The hab4_pki_tree script can be run in two modes, a) Interactive, b) Command line interface (CLI).

The following are the common steps between interactive and CLI mode to generate a HAB4 PKI

tree for Linux.

CA

SRK1

CSF1_1 IMG1_1

SRK2

CSF2_1 IMG2_1

SRKN

CSFN_1 IMGN_1

Not generated

automatically by

the hab4_pki_tree

script

CSF1_2 IMG2_2

A-14 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

2. cd <CST Installation Path>/keys

3. Using your favorite text editor create a file called ‘serial’ in the /keys directory with

contents 12345678. OpenSSL uses the contents of this file for the certificate serial

numbers. You may choose to use another number for the initial certificate serial number.

4. Using your favorite text editor create a file called ‘key_pass.txt’ in the /keys directory. This

file contains your pass phrase that will protect the HAB code signing private keys. The

format of this file is the pass phase repeated on the first and second lines of the file. For

example:

my_pass_phrase

my_pass_phrase

NOTE

Failure to generate the serial and key_pass.txt files prior to running

the hab4_pki_tree script will result in OpenSSL errors and the script

will fail to generate the requested tree.

CAUTION

It is up to the user how best to protect the pass phrase for the private

keys. Loss of the pass phrase will result in not being able to sign

code with the affected keys.

NOTE

Note that OpenSSL enforces that the pass phrase must be at least

four characters long.

5. Prior to running the hab4_pki_tree.sh ensure that OpenSSL is included in your search

path by running:

> openssl version

3.1.2.1 Running the hab4_pki_tree script in interactive mode

Run the hab4_pki_tree.sh script in interactive mode. The script will ask a series of

questions:

— Do you want to use an existing CA key (y/n)?

– Choose no here unless you already have an existing CA key.

– If you choose yes, the script will ask you to provide the filenames (including path

information) to the location of the CA key and corresponding CA public key

certificate.

— Do you want to use Elliptic Curve Cryptography (y/n)?:

– If “n”, Enter key length in bits for PKI tree:

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-15 NXP

– This is the length in bit for the keys in the tree. For HAB4 1024, 2048, 3072 and

4096-bit RSA keys are supported. All keys in the tree are generated with the

same length.

– If “y”, Enter length for elliptic curve to be used for PKI tree: Possible values p256,

p384, p521:

– This is the length in bit for the keys in the tree. For HAB4 P256, P384 and P521

EC keys are supported. All keys in the tree are generated with the same length.

— Enter PKI tree duration (years):

– This defines the validity period of the corresponding certificates.

— How many Super Root Keys should be generated?

– Up to four SRKs may be generated by this script. This allows for up to four SRKs

to be included in a HAB4 SRK table. See Section 4.2, “SRK Tool” for further

details.

– Do you want the SRK certificates to have the CA Flag set?

– Answer ‘y’ for a standard tree, ‘n’ for fast authentication tree.

Figure 12 below illustrates the use of the hab4_pki_tree script.

$./hab4_pki_tree.sh

...

<snip>

...

Do you want to use an existing CA key (y/n)?: n

Key type options (confirm targeted device supports desired key type):

Select the key type (possible values: rsa, rsa-pss, ecc)?: rsa

Enter key length in bits for PKI tree: 2048

Enter PKI tree duration (years): 10

How many Super Root Keys should be generated? 1

Do you want the SRK certificates to have the CA flag set? (y/n)?: n

A default 'serial' file was created!

A default file 'key_pass.txt' was created with password = test!

+++++++++++++++++++++++++++++++++++++

+ Generating CA key and certificate +

+++++++++++++++++++++++++++++++++++++

Generating a RSA private key

...................................+++++

.....+++++

writing new private key to 'temp_ca.pem'

++

A-16 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

+ Generating SRK key and certificate 1 +

++

...

...+++++

.....................................+++++

Using configuration from ../ca/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

commonName :ASN.1 12:'SRK1_sha256_2048_65537_v3_usr'

Certificate is to be certified until Dec 12 21:44:07 2033 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

Figure 12. Example Usage of the hab4_pki_tree Script

3.1.2.2 Running the hab4_pki_tree script in CLI mode

The hab4_pki_tree script is run in CLI mode by providing the necessary inputs to the script

at the time of execution. This interface can be helpful when automation is required.

Following are the inputs related to the CLI:

./hab4_pki_tree:.sh -existing-ca <y/n> [-ca-key <CA key name> -ca-cert <CA cert name>]

-use-ecc <y/n> -kl <ECC/RSA Key Length> -duration <years> -num-srk <1-4> -srk-ca

<y/n>

Options:

— -existing-ca: Choose whether to use an existing CA key

Valid inputs:

“y” – Provide -ca-key with CA key filename and -ca-cert with CA public key

certificate filename (including path information)

“n” – Existing CA key is not selected

— -use-ecc: Choose whether to use Elliptic Curve Cryptography (ECC) or RSA

Valid inputs:

“y” – ECC keys will be generated for the PKI tree

“n” – RSA keys will be generated for the PKI tree

— -kl – Enter key length for the key type selected

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-17 NXP

– If -use-ecc is “y” then provide -kl with length for elliptic curve to be used for PKI

tree: Possible values p256, p384, p521

– If -use-ecc is “n” then provide -kl with length in bit for the RSA to be used for PKI

tree: Possible values for HAB4 1024, 2048, 3072 and 4096-bit

— -duration: Enter PKI tree duration (in years)

— -num-srk: Enter up to four SRKs (1 – 4)

— -srk-ca: Choose whether the SRK certificates are to have the CA Flag set

Valid inputs:

“y” – A standard PKI tree will be created

“n” – A fast authentication PKI tree will be created.

For more information on these options, please refer to the details in interactive mode

section.

At this point the script will generate the SRK, CSF and IMG keys and certificates in the /keys and

/crts directory. The generated keys will exist in PKCS#8 [4] format in both PEM and DER forms.

Certificates are in the /crts directory X.509 [3] format in both PEM and DER format. The cst will

accept key and certificate files in either PEM or DER form.

NOTE

You may notice that there are several pem files such as

12345678.pem, serial.old, index.txt.attr and so on. These files are

left over from the OpenSSL key and certificate generation process.

At this point all key and certificate information required for signing an image for HAB4 is now

available.

3.1.3 Generating HAB4 SRK tables and Efuse Hash

The previous section discussed the steps to generate the keys and certificates for a HAB4 PKI tree.

Now that they have been generated, the next step is to generate a HAB4 SRK table and

corresponding hash value for burning to efuses on the SoC. In HAB4 it is possible to include up

to four SRKs in a signed image, although only one may be used per reset cycle. By collecting

SRKs in a table it is possible to select one of the SRKs at boot time. The Install SRK CSF command

(see Section 5.2.2, “Install SRK”) selects which SRK to use from the table to establish the root of

trust. Any of the SRKs in the table may be selected without having to change the SRK_HASH

value burned to efuses on the SoC.

This is useful on NXP processors where additional fuses are available for SRK revocation. That

is, in the event one or more of the SRKs in the table are compromised, efuses corresponding to the

compromised keys can be burned preventing those SRKs from ever being used again. This is

enforced by the HAB library. The next SRK in the table can be used to sign new images. A

minimum of one and maximum of four SRKs can be placed in an SRK table.

A-18 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

NOTE

Only the first three SRKs in a table can be revoked, so it

recommended to use an SRK table with four keys in order to have

one SRK to fall back on which cannot be revoked.

SRK tables are generated using the srktool. The following illustrates the generation of an SRK

table from the /crts directory using the four SRKs created in the previous section.

$../linux64/bin/srktool -h 4 -t SRK_1_2_3_4_table.bin -e

SRK_1_2_3_4_fuse.bin -d sha256 -c

./SRK1_sha256_2048_65537_v3_ca_crt.pem,./SRK2_sha256_2048_65537_v3_ca_crt.pem

,./SRK3_sha256_2048_65537_v3_ca_crt.pem,./SRK4_sha256_2048_65537_v3_ca_crt.pe

m -f 1

Number of certificates = 4

SRK table binary filename = SRK_1_2_3_4_table.bin

SRK Fuse binary filename = SRK_1_2_3_4_fuse.bin

SRK Fuse binary dump:

SRK HASH[0] = 0x5B31CBE9

SRK HASH[1] = 0x6DE304C8

SRK HASH[2] = 0x99F821DE

SRK HASH[3] = 0x2803B237

SRK HASH[4] = 0xC8EF0FF8

SRK HASH[5] = 0x12F30689

SRK HASH[6] = 0xF38CE4A3

SRK HASH[7] = 0x39669C00

Figure 13. SRK Table and Efuse Generation Example

In this example:

• All four SRKs are included in the table

• The SHA-256 hash value is generated with 32 bit of fuse data per word. Some NXP

processors require the hash value to be generated with 8 bits of fuse data per word. In that

case use the ‘-f 0’ option.

• The hash result in the resulting SRK_1_2_3_4_fuse.bin file is in little endian format.

This means that the first byte in the file corresponds to SRK_HASH[255:248] and the last

byte corresponds to SRK_HASH[7:0] in the efuse map. Similarly, when using the ‘-f 0’

option the first non-zero byte in the file corresponds to SRK_HASH[255:248] and the last

non-zero byte corresponds to SRK_HASH[7:0].

CAUTION

Do not enter spaces between the ‘,’ when specifying the SRKs in the

-c or --certs option. Doing so will cause all certificates specified

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-19 NXP

after the first space not to be included in the table and resulting efuse

hash.

3.1.4 Programming the SRK Hash Value to Efuses

The previous section provided the details on how to SRK tables and the corresponding efuse data.

In this section the hash value is of interest. The value located in the efuse file is intended to be

burned to the SRK_HASH efuse field on the SoC supporting HAB4 and is computed automatically

by the hab4_pki_tree script using the srktool. The SRK1_2_3_4_fuse.bin file from the

example in the previous section has the following contents:

e9cb315bc804e36dde21f89937b20328f80fefc88906f312a3e48cf3009c

This hash value must be burned to the SoC efuses in the following order:

SRK HASH[0] = 0x5B31CBE9

SRK HASH[1] = 0x6DE304C8

SRK HASH[2] = 0x99F821DE

SRK HASH[3] = 0x2803B237

SRK HASH[4] = 0xC8EF0FF8

SRK HASH[5] = 0x12F30689

SRK HASH[6] = 0xF38CE4A3

SRK HASH[7] = 0x39669C00

Figure 14. SRK Hash Value Assignment to SoC SRK_HASH Efuse Field for HAB4

Please refer to the fuse map for the NXP processor you are using for location details of the

SRK_HASH field.

3.1.5 Adding a Key to a HAB4 PKI Tree

Adding to an existing HAB4 PKI tree can be done using the add_key script. The add_key script

can be run in two modes, a) Interactive, b) Command line interface (CLI).

3.1.5.1 Running the add_key script in interactive mode

The following steps are used to add a new key by running add_key script in interactive mode:

1. Run the add_key.sh script for Linux. The script will prompt you with several questions:

— Which version of HAB/AHAB do you want to generate the key for (4 = HAB4 / a =

AHAB)

— Enter new key name (e.g. SRK5):

– This the name of the new key, such as SRK2, CSF1_2, etc.

— Enter new key type:

– This can be either ECC or RSA

— Enter new key length in bits:

A-20 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

– If the This is the length of the new key in bits. This should match the key length of

the signing key.

— Enter certificate duration (years):

– This defines the validity period for the corresponding certificate generated

— Is this an SRK key?

– If you are generating a new SRK enter ‘y’, otherwise enter ‘n’

– If you enter no , it implies that you are generating a CSF/IMG/SGK key.

— Enter <key type> signing key name:

– If you are generating a new SRK <key type> is CA. Enter the path and filename of

the CA key in the /keys directory.

– If you are generating a new CSF/IMG/SGK key <key type> is SRK. Enter the path

and filename of the SRK in the /keys directory you wish to use to generate the

CSF/IMG/SGK key.

— Enter <cert type> signing certificate name:

– If you are generating a new SRK certificate the <cert type> is CA. Enter the path

and filename of the CA certificate in the /crts directory.

– If you are generating a new CSF/IMG/SGK certificate <cert type> is SRK. Enter the

path and filename of the SRK certificate in the /certs directory you wish to use to

generate the CSF/IMG/SGK certificate.

Using the keys generated in Section 3.2.2, “Running the hab4_pki _tree script Example”, Figure

15 below shows how to add a new SRK key to the PKI tree.

$./add_key.sh

Which version of HAB/AHAB do you want to generate the key for (4 = HAB4 / a =

AHAB)?: 4

Enter new key name (e.g. SRK5):

Enter new key type (ecc / rsa / rsa-pss): rsa

Enter new key length in bits: 2048

Enter certificate duration (years): 10

Is this an SRK key?: y

Do you want the SRK to have the CA flag set (y/n)?: y

Enter CA signing key name: CA1_sha256_2048_65537_v3_ca_key.pem

Enter CA signing certificate name:

../crts/CA1_sha256_2048_65537_v3_ca_crt.pem

...+++++

.................................+++++

Using configuration from ../ca/openssl.cnf

Check that the request matches the signature

Signature ok

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-21 NXP

The Subject's Distinguished Name is as follows

commonName :ASN.1 12:'_sha256_2048_65537_v3_ca'

Certificate is to be certified until Dec 12 22:06:16 2033 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

Figure 15. Adding a New SRK to a HAB4 PKI Tree Example

3.1.5.2 Running the add_key script in CLI mode

The add_key script is run in CLI mode by providing the necessary inputs to the script at

the time of execution. This interface can be helpful when automation is required. Following

are the inputs related to the CLI:

./add_key.sh -ver <4/a> -key-name <new key name> -kt <ecc/rsa> -kl <key length> [-md

<message digest>] -duration <years> -srk <y/n> [-srk-ca <y/n>] -signing-key <CA/SRK

signing key> -signing-crt <CA/SRK signing cert>

Options:

— -ver: Enter the version of HAB/AHAB you want to generate the key for (4/a)

 Valid inputs:

 “4” – HABv4 is selected

 “a” – AHAB is selected

— -key-name: Enter new key name

— -kt: Enter key type of the new key (rsa/ecc)

 Valid inputs:

 “rsa” – RSA key type is selected

 “ecc” – ECC key type is selected

— -kl: Enter length of the new key in bits

– If -kt is “rsa”, then supported key lengths are 2048, 3072, 4096-bit

– If -kt is “ecc”, then supported key lengths are p256, p384, p521

— -md: Enter hashing function

– If -ver is “a” (AHAB) then supported message digests are sha256, sha384, sha512

– If -ver is “4” (HAB) then message digest is fixed to sha256

— -duration: Enter certificate duration (in years)

— -srk: Choose whether this an SRK key

 Valid inputs:

 “y” – A new SRK key is generated

A-22 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

 “n” – A new CSF/IMG/SGK key is generated

— -srk-ca: Choose whether the SRK certificates has the CA Flag set

Valid inputs:

“y” – The SRK certificate has CA flag set

“n” – The SRK certificate does not have CA flag set

— -signing-key: Enter signing key filename (including path information)

– If this is an SRK key then enter CA key filename based on whether the SRK is a CA

cert or user cert

– If this is a CSF/IMG/SGK key then enter the signing SRK key filename

— -signing-crt: Enter signing certificate filename (including path information)

– If this is an SRK key then enter CA certificate filename based on whether the SRK

is a CA cert or user cert

– If this is a CSF/IMG/SGK certificate then enter the signing SRK certificate filename

For more information on these options, please refer to the details in interactive mode

section.

CAUTION

Do not run this script without first generating a HAB4 PKI tree.

Failure to do so will result in errors.

3.2 Generating AHAB Keys and Certificates

This section covers only key and certificate generation for AHAB. Note that when making use of

the encrypted boot feature digital signatures are still required. Data structures required by ROM and

AHAB cannot be encrypted but still must be covered by a valid digital signature.

NOTE

This section provides examples specifically for SECO-enabled

devices. If you are using ELE-enabled devices, please refer to the

SRKTool command line help, for guidance on the number of

supported fuses.

3.2.1 AHAB PKI Tree

The tree structure for AHAB generated by the ahab_pki_tree.sh script for Linux. This script

will generate a AHAB PKI tree as shown in Figure 11 and is located in the /keys directory of the

NXP Reference CST.

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure11

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-23 NXP

Figure 11. AHAB PKI Tree

An AHAB PKI tree consists of the following keys and certificates:

• CA key: is the top most key and is only used for signing SRK certificates.

• SRK: is the root key for AHAB code signing keys. The cryptographic hash of a table of

SRK is burned to one-time programmable efuses to establish a root of trust. Only one of

the SRKs in the table may be selected for use on the NXP processor. The selection of which

SRK to use is a parameter within the Install SRK CSF command (see Section 5.2.2, “Install

SRK”). The SRK may only be used for signing certificate data of subordinate keys.

• SGK: is a subordinate key of the SRK key and is used to verify signatures across product

software.

• NOTE: The SGK keys are not generated if the SRK keys do not have the CA flag set

The ahab_pki_tree script generates a basic tree in which four SRKs may be generated. For each

SRK a single SGK key is also generated. Additional keys may be added to the tree later using a

separate script. It is also possible to replace the OpenSSL and the ahab_pki_tree script with an

alternative key generation solution, but this is beyond the scope of this document. If the key

generation scheme described here is replaced a new scheme must follow these constraints:

• Keys must be in PKCS#8 format

• Certificates must be in X.509 format following the certificate profile specified by AHAB.

Keys and Certificates must follow the file naming convention specified in Section 3, “Key

and Certificate Generation”.

3.2.2 Running the ahab_pki_tree script Example

The following are the common steps to generate an AHAB PKI tree in interactive or CLI mode.

1. cd <CST Installation Path>/keys

2. Using your favorite text editor create a file called ‘serial’ in the /keys directory with

contents 12345678. OpenSSL uses the contents of this file for the certificate serial

numbers. You may choose to use another number for the initial certificate serial number.

3. Using your favorite text editor create a file called ‘key_pass.txt’ in the /keys directory. This

file contains your pass phrase that will protect the AHAB code signing private keys. The

format of this file is the pass phase repeated on the first and second lines of the file. For

example:

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_HAB_Key_and
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_HAB_Key_and

A-24 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

my_pass_phrase

my_pass_phrase

NOTE

Failure to generate the serial and key_pass.txt files prior to running

the ahab_pki_tree script will result in OpenSSL errors and the script

will fail to generate the requested tree.

CAUTION

It is up to the user how best to protect the pass phrase for the private

keys. Loss of the pass phrase will result in not being able to sign

code with the affected keys.

NOTE

Note that OpenSSL enforces that the pass phrase must be at least

four characters long.

4. Prior to running the ahab_pki_tree script ensure that OpenSSL is included in your

path by running:

> openssl version

3.2.2.1 Running the ahab_pki_tree script in interactive mode

Run the ahab_pki_tree script in interactive mode. The script will ask a series of questions:

– Do you want to use an existing CA key (y/n)?

– Choose no here unless you already have an existing CA key.

– If you choose yes, the script will ask you to provide the filenames (including path

information) to the location of the CA key and corresponding CA public key

certificate.

– Do you want to use Elliptic Curve Cryptography (y/n)?

– This is the type of the keys in the tree.

– If you choose yes, the script will ask you to provide the Elliptic Curve to be used.

For AHAB, P-256, P-384 and P-521curves are supported.

– If you choose no, the script will ask you to enter the length in bit for the RSA keys

in the tree. For AHAB 2048, 3072 and 4096-bit RSA keys are supported.

– All keys in the tree are generated with the same length.

– Enter digest algorithm to use:

– This is the digest algorithm used to create the keys

– Allowed digest algorithms are: sha256, sha384 and sha512

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-25 NXP

– Enter PKI tree duration (years):

– This defines the validity period of the corresponding certificates.

– Do you want the SRK certificates to have the CA Flag set?

– Answer ‘y’ for a tree with Certificates as defined by the AHAB architecture.

Figure 12 below illustrates the use of the ahab_pki_tree script.

$./ahab_pki_tree.sh

...

<snip>

...

Do you want to use an existing CA key (y/n)?: n

Key type options (confirm targeted device supports desired key type):

Select the key type (possible values: rsa, rsa-pss, ecc)?: ecc

Enter length for elliptic curve to be used for PKI tree:

Possible values p256, p384, p521: p384

Enter the digest algorithm to use: sha384

Enter PKI tree duration (years): 10

Do you want the SRK certificates to have the CA flag set? (y/n)?: n

+++++++++++++++++++++++++++++++++++++

+ Generating CA key and certificate +

+++++++++++++++++++++++++++++++++++++

Generating an EC private key

writing new private key to 'temp_ca.pem'

++

+ Generating SRK key and certificate 1 +

++

read EC key

writing EC key

Using configuration from ../ca/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

commonName :ASN.1 12:'SRK1_sha384_secp384r1_v3_usr'

Certificate is to be certified until Dec 12 22:09:07 2033 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure12

A-26 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

...

<snip>

...

Figure 12. Example Usage of the AHAB_pki_tree Script

3.2.2.2 Running the ahab_pki_tree script in CLI mode

The ahab_pki_tree script is run in CLI mode by providing the necessary inputs to the script

at the time of execution. This interface can be helpful when automation is required.

Following are the inputs related to the CLI:

./ahab4_pki_tree.sh -existing-ca <y/n> [-ca-key <CA key name> -ca-cert <CA cert name>]

-use-ecc <y/n> -kl <ECC/RSA Key Length> -da <digest algorithm> -duration <years> -

srk-ca <y/n>

Options:

— -existing-ca: Choose whether to use an existing CA key

Valid inputs:

“y” – Provide -ca-key with CA key filename and -ca-cert with CA public key

certificate filename (including path information)

“n” – Existing CA key is not selected

— -use-ecc: Choose whether to use Elliptic Curve Cryptography (ECC) or RSA

Valid inputs:

“y” – ECC keys will be generated for the PKI tree

“n” – RSA keys will be generated for the PKI tree

— -kl – Enter key length for the key type selected

– If -use-ecc is “y” then provide -kl with length for elliptic curve to be used for PKI

tree: Possible values p256, p384, p521

– If -use-ecc is “n” then provide -kl with length in bit for the RSA to be used for PKI

tree: Possible values for AHAB 2048, 3072 and 4096-bit

— -da: Enter digest algorithm:

– Valid inputs include sha256, sha384 and sha512

— -duration: Enter PKI tree duration (in years)

— -num-srk: Enter up to four SRKs (1 – 4)

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-27 NXP

— -srk-ca: Choose whether the SRK certificates have the CA Flag set

Valid inputs:

“y” – A standard PKI tree will be created

“n” – A fast authentication PKI tree will be created.

For more information on these options, please refer to the details in interactive mode

section.

At this point the script will generate the SRK and SGK keys and certificates in the /keys and /crts

directory. The generated keys will exist in PKCS#8 [4] format in both PEM and DER forms.

Certificates are in the /crts directory X.509 [3] format in both PEM and DER format. The cst will

accept key and certificate files in either PEM or DER form.

NOTE

You may notice that there are several pem files such as

12345678.pem, serial.old, index.txt.attr and so on. These files are

left over from the OpenSSL key and certificate generation process.

At this point all key and certificate information required for signing an image for AHAB is now

available.

3.2.3 Generating AHAB SRK tables and Efuse Hash

The previous section discussed the steps to generate the keys and certificates for an AHAB PKI

tree. Now that they have been generated, the next step is to generate an AHAB SRK table and

corresponding hash value for burning to efuses on the SoC. In AHAB four SRKs are included in

a signed image, although only one may be used. By collecting SRKs in a table it is possible to

select one of the SRKs at boot time. The Install SRK CSF command (see Section 5.2.2, “Install

SRK”) selects which SRK to use from the table to establish the root of trust. Any of the SRKs in

the table may be selected without having to change the SRK_HASH value burned to efuses on the

SoC.

This is useful on NXP processors where additional fuses are available for SRK revocation. That

is, in the event one or more of the SRKs in the table are compromised, efuses corresponding to the

compromised keys can be burned preventing those SRKs from ever being used again. This is

enforced by the AHAB code. The next SRK in the table can be used to sign new images. Four

SRKs can be placed in an SRK table.

NOTE

The four SRKs in a table can be revoked.

SRK tables are generated using the srktool. The following illustrates the generation of an SRK

table from the /crts directory using the four SRKs created in the previous section.

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK

A-28 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

$../linux64/bin/srktool -a -s sha384 -t SRK_1_2_3_4_table.bin -e

SRK_1_2_3_4_fuse.bin -f 1 -c

./SRK1_sha384_secp384r1_v3_usr_crt.pem,./SRK2_sha384_secp384r1_v3_usr_crt.pem

,./SRK3_sha384_secp384r1_v3_usr_crt.pem,./SRK4_sha384_secp384r1_v3_usr_crt.pe

m

Number of certificates = 4

SRK table binary filename = SRK_1_2_3_4_table.bin

SRK Fuse binary filename = SRK_1_2_3_4_fuse.bin

SRK Fuse binary dump:

SRK HASH[0] = 0xA83170EF

SRK HASH[1] = 0xFA1D5EA8

SRK HASH[2] = 0xE3A2C737

SRK HASH[3] = 0xAD1D0241

SRK HASH[4] = 0x6246BE44

SRK HASH[5] = 0x75439F14

SRK HASH[6] = 0x9F65FC0B

SRK HASH[7] = 0x6DAC9B80

SRK HASH[8] = 0x9481C935

SRK HASH[9] = 0x8C6CC5EC

SRK HASH[10] = 0x9104B9E5

SRK HASH[11] = 0x5F97C971

SRK HASH[12] = 0x0DA8DDA5

SRK HASH[13] = 0xAC21273D

SRK HASH[14] = 0x0FCE73F7

SRK HASH[15] = 0x3FC9ACBA

Figure 13. SRK Table and Efuse Generation Example

In this example:

• All four SRKs are included in the table

• The signature hash algorithm that will be used for signing is SHA-384 (option “-s”)

• The SHA-512 hash value to be fused is generated with 32 bit of fuse data per word. Some

NXP processors require the hash value to be generated with 8 bits of fuse data per word.

In that case use the ‘-f 0’ option.

• The hash result is in the resulting SRK_1_2_3_4_fuse.bin file.

CAUTION

Do not enter spaces between the ‘,’ when specifying the SRKs in the

-c or --certs option. Doing so will cause all certificates specified

after the first space not to be included in the table and causing an

execution error of srktool.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-29 NXP

3.2.4 Programming the SRK Hash Value to Efuses

The previous section provided the details on how to SRK tables and the corresponding efuse data.

In this section the hash value is of interest. The value located in the efuse file is intended to be

burned to the SRK_HASH efuse field on the SoC supporting AHAB and is computed

automatically by the AHAB_pki_tree script using the srktool. The

SRK_1_2_3_4_fuse.bin file from the example in the previous section has the following

contents:

ef7031a8a85e1dfa37c7a2e341021dad44be4662149f43750bfc659f809bac6d35c98194ecc56

c8ce5b9049171c9975fa5dda80d3d2721acf773ce0fbaacc93f

Here is the corresponding hexadecimal dump of the fuse file.

$ hexdump -C SRK_1_2_3_4_fuse.bin

00000000 ef 70 31 a8 a8 5e 1d fa 37 c7 a2 e3 41 02 1d ad |.p1..^..7...A...|

00000010 44 be 46 62 14 9f 43 75 0b fc 65 9f 80 9b ac 6d |D.Fb..Cu..e....m|

00000020 35 c9 81 94 ec c5 6c 8c e5 b9 04 91 71 c9 97 5f |5.....l.....q.._|

00000030 a5 dd a8 0d 3d 27 21 ac f7 73 ce 0f ba ac c9 3f |....='!..s.....?|

This hash value must be burned to the SoC efuses in the following order (the first word to the first

fuse row index):

$ hexdump -e '/4 "0x"' -e '/4 "%X""\n"' SRK_1_2_3_4_fuse.bin

0xA83170EF

0xFA1D5EA8

0xE3A2C737

0xAD1D0241

0x6246BE44

0x75439F14

0x9F65FC0B

0x6DAC9B80

0x9481C935

0x8C6CC5EC

0x9104B9E5

0x5F97C971

0xDA8DDA5

0xAC21273D

0xFCE73F7

0x3FC9ACBA

Please refer to the fuse map for the NXP processor you are using for location details of the

SRK_HASH field.

A-30 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

3.2.5 Adding a Key to an AHAB PKI Tree

Adding to an existing AHAB PKI tree can be done using the add_key script. The following steps

are used to add a new key:

1. Run the add_key.sh script for Linux. The script will prompt you with several questions:

– Which version of HAB/AHAB do you want to generate the key for (3/4/a)?

– Enter a here for AHAB

– Enter new key name (e.g. SRK5):

– This is the name of the new key, such as SRK2, SGK3, etc.

– Enter new key type (ecc / rsa):

– This is the type of the new key, either ECC or RSA.

– Enter new key length in bits:

– This is the length of the new key in bits. This should match the key length of the

signing key.

– Enter new message digest:

– This is the digest of the key signature.

– Enter certificate duration (years):

– This defines the validity period for the corresponding certificate generated

– Is this an SRK key?

– If you are generating a new SRK enter ‘y’, otherwise enter ‘n’

– If you enter yes, you will be prompted with “Do you want the SRK to have the CA

flag set?”. Enter yes if you are generating a SRK with the CA flag set.

– If you enter no, you are generating a new SGK key.

– Enter <key type> signing key name:

– If you are generating a new SRK <key type> is CA. Enter the path and filename of

the CA key in the /keys directory.

– If you are generating a new SGK key <key type> is SRK. Enter the path and

filename of the SRK in the /keys directory you wish to use to generate the SGK key.

– Enter <cert type> signing certificate name:

– If you are generating a new SRK certificate the <cert type> is CA. Enter the path

and filename of the CA certificate in the /crts directory.

– If you are generating a new SGK certificate <cert type> is SRK. Enter the path and

filename of the SRK certificate in the /certs directory you wish to use to generate

the SGK certificate.

Using the keys generated in Section 3.2.2, “Running the AHAB_pki _tree script Example”,

Figure 15 below shows how to add a new SRK key to the PKI tree.

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Running_the_hab4_pki_tree
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure15

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-31 NXP

$./add_key.sh

Which version of HAB/AHAB do you want to generate the key for (4 = HAB4 / a =

AHAB)?: a

Enter new key name (e.g. SRK5):

Enter new key type (ecc / rsa / rsa-pss): ecc

Enter new key length (p256 / p384 / p521): p384

Enter new message digest (sha256, sha384, sha512): sha384

Enter certificate duration (years): 10

Is this an SRK key?: y

Do you want the SRK to have the CA flag set (y/n)?: n

Enter CA signing key name: CA1_sha384_secp384r1_v3_ca_key.pem

Enter CA signing certificate name: ../crts/CA1_sha384_secp384r1_v3_ca_crt.pem

read EC key

writing EC key

Using configuration from ../ca/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

commonName :ASN.1 12:'_sha384_secp384r1_v3_usr'

Certificate is to be certified until Dec 12 22:25:42 2033 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

Figure 15. Adding a New SRK to an AHAB PKI Tree Example

CAUTION

Do not run this script without first generating an AHAB PKI tree.

Failure to do so will result in errors.

4 CST Usage

This section describes how to use the CST and other tools in the release package.

4.1 CST (Code Signing Tool)

The cst tool in the release package is the main application used to generate binary CSF data using

input CSF description files passed as standard input. The CST can be executed from any location

provided the correct absolute or relative path is provided. The paths to certificate and image files

inside CSF can be either relative to the current working directory location or as absolute paths.

A-32 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

CAUTION

Due to limitation in current cst implementation the cst must be run

from a directory at the same level as <Installation path>/keys. For

example, <Installation path>/product_code where the product code

to be signed is located.

Usage:

cst --output <binary> [--cert <cert_file>] --input <input_csf>

[--license] [--help]

Description:

-o, --output <binary csf>:

 Output binary CSF filename

-i, --input <csf text file>:

 Input CSF text filename

-c, --cert <public key certificate>:

 Optional, Input public key certificate to encrypt the dek

-b, --backend <ssl or pkcs11>:

 Optional, Select backend. SSL backend is the default and

 uses keys stored in the local host filesystem. The PKCS11

 backend supplies an interface to PKCS11 supported keystore.

-g, --verbose:

 Optional, displays verbose information. No additional

 arguments are required

-l, --license:

 Optional, displays program license information. No additional

 arguments are required

-v, --version:

 Optional, displays the version of the tool. No additional

 arguments are required

-h, --help:

 Optional, displays usage information. No additional

 arguments are required

Command line arguments that specify a file or directory can contain spaces if they are

quoted. File names with leading and trailing spaces are not supported.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-33 NXP

If an error occurs during the operation of cst, an error message will be printed to the

standard output stream and the executable will exit with a non-zero status.

Exit Status:

0 if the executable succeeded, or

>0 otherwise.

Cautions:

None.

Pre-Conditions/Assumptions:

Input CSF must be present at specified path.

Certificates must be in a directory called crts.

Keys must be in a directory called keys. The keys directory must be located at the same

level as the crts directory.

Filenames for the keys and certificates must use the following convention

<filename>_<type>.pem or <filename>_<type>.der

 where: <filename> is the root of the key/certificate filename

 <type> is key for keys and crt for certificates.

 Example: keys/SRK1_sha256_2048_65537_v3_ca_key.der must have a

corresponding certificate crts/SRK1_sha256_2048_65537_v3_ca_crt.der

Post Conditions:

None.

Examples:

1. To generate out.bin file from input example.csf, use

 cst -o out.bin -i example.csf

2. To print program license information, use

 cst --license

3. To print usage information, use

 cst --help

4. To generate out.bin from input hab4.csf and public key certificate to encrypt symmetric

key(s)

cst -o out.bin --cert dek_protection_crt.pem -i example.csf

4.2 SRK Tool

The SRK tool is used to generate super root key table data and its hash (for efuses).

A-34 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

4.2.1 SRK Tool Usage for HAB4

This section describes usage of SRK tool for HAB4.

Usage:

srktool --hab_ver <version> --table <tablefile> --efuses <efusefile>

 --digest <digestalg> --certs <srk>,%<srk>,...

 [--fuse_format <format>] [--license]

Description:

 -h, --hab_ver <version>:

 HAB Version - set to 4 for HAB4 SRK table generation

 -t, --table <tablefile>:

 Filename for output SRK table binary file

 -e, --efuses <efusefile>:

 Filename for the output SRK efuse binary file containing the SRK

table

 hash

 -d, --digest <digestalg>:

 Message Digest algorithm. Only sha256 is supported

 -c, --certs <srk1>,<srk2>,...,<srk4>:

 X.509v3 certificate filenames.

 - Certificates may be either DER or PEM encoded format

 - Certificate filenames must be separated by a ','with no spaces

 - A maximum of 4 certificate filenames may be provided. Additional

 certificate names are ignored

 - Placing a % in front of a filename replaces the public

 key data in the SRK table with a corresponding hash digest

 -f, --fuse_format <format>:

 Optional, Data format of the SRK efuse binary file. The

 format may be selected by setting <format> to either:

 - 0: 8 fuses per word, ex: 00 00 00 0a 00 00 00 01 ...

 - 1 (default): 32 fuses per word, ex: 0a 01 ff 8e

 -l, --license:

 Optional, displays program license information. No additional

 arguments are required.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-35 NXP

 -v, --version:

 Optional, displays the version of the tool. No additional

 arguments are required.

 -b, --verbose:

 Optional, displays a verbose output.

Command line arguments that specify a file or directory can contain spaces if they are

quoted. File names with leading and trailing spaces are not supported.

If an error occurs during the operation of srktool, an error message will be printed to the

standard output stream and the executable will exit with a non-zero status.

Exit Status:

0 if the executable succeeded, or

>0 otherwise.

NOTE

Using the % prefix in the -c option does not change the SRL fuse

pattern generated but does reduce the overall size of the SRK Table.

However, an SRK prefixed with % cannot be selected in the Install

SRK command using that SRK Table.

Cautions:

None.

Pre-Conditions/Assumptions:

None.

Post Conditions:

None.

Examples:

1. To generate an SRK table and corresponding fuse pattern from 3 certificates

• using PEM encoded certificate files

• using full key for first two certificates and hash digest for the

third

• using the default 32 fuse bits per word for the efuse file

srktool --hab_ver 4 --table table.bin --efuses fuses.bin \

 --digest sha256 \

 --certs srk1_crt.pem,srk2_crt.pem,srk3_crt.pem

A-36 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

2. To generate an alternative SRK Table with the same fuse pattern as in example 1 and with

SRK3 selectable:

srktool --hab_ver 4 --table table.bin --efuses fuses.bin \

 --digest sha256 \

 --certs srk1_crt.pem,srk2_crt.pem,srk3_crt.pem

3. To generate an SRK table and corresponding fuse pattern from 2 certificates

• using DER encoded certificate files

• using the optional 8 fuse bits per word for the efuse file

srktool --hab_ver 4 --table table.bin --efuses fuses.bin \

 --digest sha256 \

 --certs srk1_crt.der,srk2_crt.der\

 --fuse_format 1

4.2.2 SRK Tool Usage for AHAB

This section describes usage of SRK tool for AHAB.

Usage:

srktool --ahab_ver --table <tablefile> --efuses <efusefile>

 --sign_digest <digestalg> --certs <srk>,<srk>,...

 [--fuse_format <format>] [--license]

Description:

srktool --ahab_ver --table <tablefile> --efuses <efusefile>

 --sign_digest <digestalg> --certs <srk>,<srk>,...

 [--fuse_format <format>] [--license]

 -a, --ahab_ver:

 AHAB Version - set for AHAB SRK table generation

 -t, --table <tablefile>:

 Filename for output SRK table binary file

 -e, --efuses <efusefile>:

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-37 NXP

 Filename for the output SRK efuse binary file containing the SRK

table

 hash

 -d, --digest <digestalg>:

 Message Digest algorithm.

 - sha512 (default): Supported in 8/8x devices

 - sha256: Supported in 8ULP

 -s, --sign_digest <digestalg>:

 Signature Digest algorithm. Either sha256, sha384 or sha512

 -c, --certs <srk1>,<srk2>,...,<srk4>:

 X.509v3 certificate filenames.

 - Certificates may be either DER or PEM encoded format

 - Certificate filenames must be separated by a ','with no spaces

 - A maximum of 4 certificate filenames may be provided. Additional

 certificate names are ignored

 -f, --fuse_format <format>:

 Optional, Data format of the SRK efuse binary file. The

 format may be selected by setting <format> to either:

 - 0: 8 fuses per word, ex: 00 00 00 0a 00 00 00 01 ...

 - 1 (default): 32 fuses per word, ex: 0a 01 ff 8e

 -l, --license:

 Optional, displays program license information. No additional

 arguments are required.

 -v, --version:

 Optional, displays the version of the tool. No additional

 arguments are required.

 -b, --verbose:

 Optional, displays a verbose output.

Command line arguments that specify a file or directory can contain spaces if they are

quoted. File names with leading and trailing spaces are not supported.

If an error occurs during the operation of srktool, an error message will be printed to the

standard output stream and the executable will exit with a non-zero status.

Exit Status:

0 if the executable succeeded, or

>0 otherwise.

Cautions:

None.

A-38 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

Pre-Conditions/Assumptions:

None.

Post Conditions:

None.

Examples:

1. To generate an SRK table and corresponding fuse pattern

• using PEM encoded certificate files

• using the default 32 fuse bits per word for the efuse file

 srktool --ahab_ver --table table.bin --efuses fuses.bin \

 --sign_digest sha384 \

 --certs

srk1_crt.pem,srk2_crt.pem,srk3_crt.pem,srk4_crt.pem

2. To generate an SRK table and corresponding fuse pattern

• using DER encoded certificate files

• using the optional 8 fuse bits per word for the efuse file

 srktool --ahab_ver --table table.bin --efuses fuses.bin \

 --sign_digest sha256 \

 --certs

srk1_crt.der,srk2_crt.der,srk3_crt.der,srk4_crt.der \

 --fuse_format 1

4.3 MAC Dump Tool

The mac_dump tool is used to dump the MAC data location and size from a HABv4 CSF binary

data file. It iterates over the tags in a provided binary CSF file, looking for the position of the

HAB_TAG_MAC tag. By doing this we receive the right offset of the nonce/MAC and hence, we

can construct a correct signed encrypted image.

Usage:

mac_dump <path to csf file>

Example:

1. To dump the offset and length of Nonce/MAC on an encrypted SPL’s CSF binary file :

mac_dump spl_encrypt_csf.bin

MAC_TAG offset: 0xa38

MAC_TAG length: 0x25

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-39 NXP

5 CSF Description Language

This section describes the CSF description language. A CSF description file is written in the CSF

description language, which is parsed and processed by the CST application and generates a binary

file containing the CSF commands (valid only for HAB), certificates, and signatures, which are

interpreted by the secure element on the end-product device.

5.1 Overview

The following are the general properties of CSF description files:

• The CSF description file is a text file containing statements, one per line.

• A backslash character ‘\’ at the end of a line (ignoring white space or comments) continues

the statement to the next line.

• Blank lines are ignored.

• Comments beginning with the # character on any line are ignored.

• Multiple white space characters are equivalent to a single space. Except where noted,

keywords and parameters are separated by white space. White space at the beginning or

end of a line is ignored.

• Except for file names, all keywords and parameters are case-insensitive.

• All certificate file parameters are relative to current folder from where CST application is

being executed.

• All byte parameters are specified as integers in the range 0...255. They can be specified in

hexadecimal or decimal.

• All parameters that specify a file name must be double quoted. A quoted file name can

contain spaces. The following file names are not supported:

— File name with leading or trailing spaces.

— File name that contains a double quote (") as part of the file name.

• Ordering of commands within the CSF description is significant only to the following

extent:

— The Header command must precede any other command. Valid for HAB and AHAB.

The next statements are valid only for HAB.

— The Install SRK command must precede the Install CSFK command.

— The Install CSFK must precede the Authenticate CSF command.

— Install SRK, Install CSFK and Authenticate CSF commands must appear exactly once

in a CSF description file.

— A verification index in an Authenticate Data command must appear as the target index

in a previous Install Key command.

— Commands in the binary CSF follow the order in which they appear in the CSF

description.

A-40 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

5.2 CSF Commands

This section describes each CSF command in detail.

5.2.1 Header

The Header command contains data used in the CSF header as well as default values used by the

CST for other commands throughout the remaining CSF.

There must be exactly one Header command and it must appear first in the CSF.

Table 3 below lists the Header command arguments.

Table 3. Header arguments

Argument name Description Valid values HAB4 AHAB

Target
Targeted secure element. If not

specified, HAB will be assumed.
HAB, AHAB O M

Version Version of HAB
4.x,

where x=0,1,...
M M

Mode
Mode of CST execution (to be specified

only for HSM handling)
HSM O O

Hash Algorithm Default hash algorithm SHA256 O X

Engine Default engine.
ANY, SAHARA, RTIC,

DCP, CAAM and SW
O X

Engine Configuration Default engine configuration See Table 4 O X

Certificate Format Default certificate format) X509 O X

Signature Format Default signature format PKCS1, CMS O X

M = mandatory, O = optional, D = use default from Header if absent and X = not present

Table 4 below lists valid engine configuration values for each engine type

Table 4. Valid Engine configuration values

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-41 NXP

Engine name Valid engine configuration values

ANY 0

SAHARA One or more of these, separated by ‘|’:

0

IN SWAP8

IN SWAP16

DSC BE816

DSC BE832

DCP One or more of these, separated by ‘|’:

0

IN SWAP8

IN SWAP32

OUT SWAP8

OUT SWAP32

CAAM One or more of these, separated by ‘|’:

0

IN SWAP8

IN SWAP16

OUT SWAP8

OUT SWAP16

DSC SWAP8

DSC SWAP16

RTIC One or more of these, separated by ‘|’:

0

IN SWAP8

IN SWAP16

OUT SWAP8

KEEP

SW 0

5.2.1.1 Header Examples

[Header]

Version = 4.1 # HAB4 example

Hash Algorithm = SHA256

Engine = Any

Engine Configuration = 0

Certificate Format = X509

Signature Format = CMS

[Header]

Target = AHAB # AHAB example

Version = 1.0

A-42 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

5.2.2 Install SRK

The Install SRK command authenticates and installs the root public key for use in subsequent

Install CSFK (HAB only) or Install Key (HAB4 only) commands.

HAB or AHAB authenticates the SRK using the SRK hash (SRK_HASH) fuses. HAB4 or AHAB

allows revocation of individual keys within the SRK table using the SRK revocation

(SRK_REVOKE) fuses.

HAB installs the SRK in slot 0 of its internal public key store.

There must be exactly one Install SRK command in a CSF, and it must occur before the Install

CSFK (HAB only) command. Table 5 lists the Install SRK command arguments.

Table 5. Install SRK arguments

M = mandatory, O = optional, D = use default from Header if absent and X = not present

Argument

name
Description Valid values HAB4 AHAB

File SRK table Valid file path M M

Source Index

SRK index within SRK table.

Installation fails if the SRK

revocation fuse with this index is

burned.

0..3 M M

Source
SRK certificate corresponding to

the specified SRK index
Valid file path X M

Source Set Origin of the SRK table
NXP, OEM (NXP is reserved for

NXP deliverables)
X M

Revocations

Revoked SRKs (Note that this

field may trigger a fusing

procedure)

4-bit bitmask X M

Hash

Algorithm
SRK table hash algorithm SHA256 D X

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-43 NXP

5.2.2.1 Install SRK Examples

[Install SRK] # HAB4 example

 File = "../crts/srk_table.bin"

 Source Index = 0

 Hash Algorithm = sha256

[Install SRK] # AHAB example

 File = "../crts/srk_table.bin"

 Source = "../crts/srk3_crt.pem"

 Source index = 2

 Source set = OEM

 Revocations = 0x0

5.2.3 Install CSFK (HAB only)

The Install CSFK command authenticates and installs a public key for use in subsequent

Authenticate CSF commands.

HAB authenticates the CSFK from the CSFK certificate using the SRK.

HAB installs the CSFK in slot 1 of its internal public key store.

There must be exactly one Install CSFK command in a CSF, and it must occur before the

Authenticate CSF command. Table 6 lists the Install CSFK command arguments.

Table 6. Install CSFK arguments

Argument name Description Valid values
HAB4

File CSFK certificate Valid file path M

Certificate Format CSFK certificate format X509 D

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.3.1 Install CSFK Examples

[Install CSFK] # HAB4 example

File = "../crts/csf.pem"

Certificate Format = X509

5.2.4 Install NOCAK (HAB4 only)

The Install NOCAK command authenticates and installs a public key for use with the fast

authentication mechanism (HAB 4.1.2 and later only). With this mechanism, one key is used for

all signatures.

A-44 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

HAB installs the no-CA key in slot 1 of its internal public key store.

There must be exactly one Install NOCAK command in a CSF, and it must occur before the

Authenticate CSF command and there must be no Install Key commands. Table 7 lists the install

NOCAK command arguments.

Table 7. Install CSFK arguments

Argument name Description Valid values
HAB4

File CSFK certificate Valid file path M

Certificate Format CSFK certificate format X509 D

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.4.1 Install NOCAK Examples

[Install NOCAK] # HAB4 example

File = "../crts/csf.pem"

Certificate Format = X509

5.2.5 Authenticate CSF (HAB only)

The Authenticate CSF command authenticates the CSF from which it is executed.

HAB authenticates the CSF using the CSFK public key, from a digital signature generated

automatically by the CST.

There must be exactly one Authenticate CSF command in a CSF file, and it must occur after the

Install CSFK command. Most other CSF commands are allowed only after the Authenticate CSF

command. Table 8 lists the Authenticate CSF command arguments.

Table 8. Authenticate CSF arguments

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-45 NXP

Argument name Description Valid values HAB4

Engine CSF signature hash engine ANY, SAHARA, RTIC, DCP,

CAAM and SW

D

Engine Configuration Configuration flags for the hash

engine. Note that the hash is

computed over an internal RAM copy

of the CSF.

see Table 4 D

Signature Format CSF signature format CMS D

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.5.1 Authenticate CSF Examples

[Authenticate CSF] # HAB4 example using all default arguments

[Authenticate CSF] # HAB4 example

Engine = DCP

Engine Configuration = 0

Signature Format = CMS

5.2.6 Install Key (HAB only)

The Install Key command authenticates and installs a public key for use in subsequent Install Key

or Authenticate Data commands.

HAB authenticates a public key from a public key certificate using a previously installed verifying

key and a hash of the public key certificate.

HAB installs the authenticated public key in an internal public key store with a zero-based array

of key slots.

The CSF author is responsible for managing the key slots in the internal public key store to

establish the desired public key hierarchy and determine the keys used in authentication operations.

Overwriting occupied key slots is not allowed, although a repeat command to re-install the same

public key occupying the target slot will be skipped and not generate an error.

Multiple Install Key commands are allowed in a CSF. An Install Key command must precede any

command which uses the installed key, and all Install Key commands must come after the

Authenticate CSF command. Table 9 lists the Install Key command arguments.

Table 9. Install Key arguments

Argument name Description Valid values HAB4

A-46 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

File Public key certificate Valid file path M

Verification

Index

Verification key index in key store. 0, 2, ..., 4

CSFK not supported

M

Target Index Target key index in key store. 2, ..., 4

SRK, CSFK slots reserved.

M

Certificate

Format

Public key certificate format. X509 D

Hash Algorithm Hash algorithm for certificate binding.

If present, a hash of the certificate specified

in the File argument is included in the

command to prevent installation from other

sharing the same verification key.

SHA256 O

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.6.1 Install Key Examples

[Install Key] # HAB4 example

Key = "../crts/imgk.pem"

Verification Index = 0

Target Index = 2

Certificate Format = X509

5.2.7 Authenticate Data

The Authenticate Data command verifies the authenticity of pre-loaded data in memory. The data

may include executable SW instructions and may be spread across multiple non-contiguous

address ranges drawn from multiple object files.

HAB authenticates the pre-loaded data using a previously installed public key from a digital

signature generated automatically by the CST.

The security configuration is taken from the Header command. Table 10 lists the Authenticate

Data command arguments.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-47 NXP

Table 10. Authenticate Data arguments

Argument

name
Description Valid values HAB4 AHAB

Blocks

List of one or more data blocks.

Each block is specified by four

parameters:

 • source file (must be binary),

 • starting load address in memory

 • starting offset within the source

file

 • length (in bytes)

Note: Please be aware that a

maximum of 8 statement blocks

are allowed.

file address offset length

with

file: valid pathname

address: 32-bit unsigned integer

offset: 0, ..., size of file

length: 0, ..., size of file - offset

Block parameters separated by

spaces.

Multiple blocks separated by

commas.

M X

Verification

Index
Verification key index in key store.

2, ..., 4 (HAB4)

SRK, CSFK not supported

NOTE: For HAB4 Fast

Authentication, this must be 0

M X

Engine Data signature hash engine.
ANY, SAHARA, RTIC, DCP,

CAAM and SW
D X

Engine

Configuration
Configuration flags for the engine. See Table 4 D X

Signature

Format
Data signature format CMS D X

File Binary to be signed Valid file path X M

Offsets

List of 2 offsets. Meaningful

information for CST into the binary

to be signed (this information is

printed out by mkimage)

container_header_offset

signature_block_offset

Offset parameters separated by

spaces

Unsigned integers

X M

Signature

Binary file containing the signature

of the container.

This field has been added for the

HSM support.

Valid file path X O

A-48 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.7.1 Authenticate Data Examples

[Authenticate Data] # HAB4 example

Blocks = 0xf8000000 0x0 0x10000 "flash.bin", \

 0xf801000 0x0 0x1000 "xyz.bin"

Verification Index = 2

Engine = DCP

Engine Configuration = 0

Signature Format = CMS

[Authenticate Data] # AHAB example

File = "flash.bin"

Offsets = 0x400 0x610

5.2.8 Install Secret Key

This command is applicable from HAB 4.1 onwards and only on processors which include CAAM

and SNVS. Each instance of this command generates a CSF command to install a secret key in

CAAM's secret key store. A key blob as described in Section 1.1.2 is unwrapped using a master

key encryption key (KEK) supplied by SNVS. A random key is generated and protected by the

CST back end and encrypted using a public key passed with --cert command line option to CST

and saved in a file under the name passed in the Key argument. This file is intended for later use

by provisioning software to create the blob. Table 11 lists the Install Secret Key command

arguments. Each execution of the CST will generate a different secret key, overwriting any

previous secret key in the given file.

Table 11. Install Secret Key arguments

Argument name Description Valid values HAB4 AHAB

Key Output filename for CST to create the

encrypted data encryption key

Valid pathname M M

Key length Key length in bits 128, 192 and 256 M M

Verification Index Master KEK index 0 or 1: OTPMK from fuses

2: ZMK from SNVS

3: CMK from SNVS

D X

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-49 NXP

Target Index Target secret key store index 0, 1, 2 or 3 of secret key store M X

Blob Address Absolute memory address where blob

will be loaded

Internal or external DDR address M X

Key Identifier Identifier that must match the value

provided during the blob generation.

32-bit value

(default value is 0)

X O

Image Indexes List of images that will be encrypted. Mask of bits

(by default, all images are

encrypted)

X O

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.8.1 Install Secret Key Examples

[Install Secret Key] # HAB4 - Example using OTPMK (Default)

Key = "data_encryption.key"

Target Index = 0 /* Secret key store index */

Blob Address = 0x0090a000 /* internal ram address */

[Install Secret Key] # HAB4 - Example using ZMK

Key = "data_encryption.key"

Verification Index = 2 /* ZMK */

Target Index = 0 /* Secret key store index */

Blob Address = 0x0090a000 /* internal ram address */

[Install Secret Key] # AHAB - Example using default values

Key = "data_encryption.key"

Key Length = 128

[Install Secret Key] # AHAB - Example using optional values

Key = "data_encryption.key"

Key Length = 128

Key Identifier = 0x4a534d21

Image Indexes = 0xFFFFFFFE /* Image index 0 not encrypted */

5.2.9 Decrypt Data (HAB only)

This command is applicable from HAB4.1 onwards. Each instance generates a CSF command to

decrypt and authenticate a list of code/data blocks using secret key stored in the secret key store.

CST will generate a corresponding AUT_DAT command. CST will encrypt the data blocks in-

place in the given files using a secret key and generate MAC data which is appended to the CSF.

Table 12 lists the Decrypt Data command arguments. The secret key index must have been the

target key index in a preceding Install Secret Key command. The same secret key must never be

used more than once. The secret key used is removed from the secret key store by the Decrypt

Data command. A separate Install Secret Key command (which generates a fresh secret key) is

required for another Decrypt Data command.

A-50 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

Table 12. Decrypt Data arguments

Argument name Description Valid values
HAB

(> 4.0)

Blocks List of one or more data blocks. Each

block is specified by four parameters:

 • source file (must be binary),

 • starting load address in memory

 • starting offset within the source file

 • length (in bytes)

file address offset length

with

file: valid pathname

address: 32-bit unsigned integer

offset: 0, ..., size of file

length: 0, ..., size of file - offset

Block parameters separated by

spaces.

Multiple blocks separated by

commas.

M

Verification Index Secret key index in Secret key store 0, 1, 2 or 3 from secret key store M

Engine MAC engine CAAM (Default) D

Engine

Configuration

Configuration flags for the engine. See Table 4

Default from header command

D

MAC Bytes Size of MAC in bytes. Even value between 4 and 16

(Default 16)

D

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.9.1 Decrypt Data Examples

[Decrypt Data]

Blocks = 0xf8000000 0x0 0x10000 "flash.bin", \

0xf8010000 0x0 0x1000 "xyz.bin"

Verification Index = 0

[Decrypt Data]

Blocks = 0xf8000000 0x0 0x10000 "flash.bin", \

 0xf8010000 0x0 0x1000 "xyz.bin", \

 0xf8012000 0x2000 0x4000 "xyz.bin", \

 0xf8018000 0x8000 0x1000 "xyz.bin"

Verification Index = 3

Engine = CAAM

Engine Configuration = 0

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-51 NXP

5.2.10 NOP (HAB only)

The NOP command has no effect.

Multiple NOP commands may appear in a CSF after the Authenticate CSF command. For HAB4,

NOP commands may also appear between the Header and Authenticate CSF commands.

The NOP command has no arguments.

5.2.10.1 NOP Example

[NOP]

5.2.11 Set Engine (HAB only)

The Set Engine command selects the default engine and engine configuration for a given

algorithm.

Some CSF commands allow the CSF author to select the engine used for an algorithm by

specifying an argument other than ANY. However, if the engine argument is ANY, then HAB

selects the engine to use based on internal criteria. The Set Engine command overrides the HAB

internal criteria and selects the engine and configuration to use when ANY is specified.

Some algorithm types do not have an associated engine argument in the CSF commands (e.g. the

signature algorithm in Authenticate Data commands). By default, HAB selects the engine to use

for such algorithms based on internal criteria. The Set Engine command overrides the HAB

internal criteria in such cases as well.

Multiple Set Engine commands may appear anywhere in a CSF after the Header command.

Subsequent commands use the engine selected by the most recent Set Engine command. Table 21

lists the Set Engine command arguments.

Table 21. Set Engine arguments

Argument name Description Valid values HAB4

Hash Algorithm Hash algorithm SHA256 M

Engine Engine

Use ANY to restore the HAB internal

criteria.

ANY, SAHARA, RTIC, DCP,

CAAM and SW

M

Engine Configuration Configuration flags for the engine. See Table 4 O

M = mandatory, O = optional, D = use default from Header if absent and X = not present

A-52 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

5.2.11.1 Set Engine Example

[Set Engine]

Hash Algorithm = SHA256

Engine = DCP

Engine Configuration = 0

5.2.12 Init (HAB only)

The Init command initializes specified engine features when exiting the internal boot ROM.

Multiple Init commands may appear after the Authenticate CSF command. A feature will be

initialized if specified in one or more Init commands. Table 22 lists the Init command arguments.

Table 22. Init arguments

Argument name Description Valid values HAB4

Engine Engine to initialize SRTC M

Features Comma-separated list of features to

initialize

RNG (CAAM). See Table 24 O

M = mandatory, O = optional, D = use default from Header if absent and X = not present

NOTE

Please refer to AN4581 regarding Init RNG feature before using it.

5.2.12.1 Init Example

[Init]

Engine = SRTC

[Init]

Engine = CAAM

Features = RNG

5.2.13 Unlock (HAB only)

The Unlock command prevents specified engine features from being locked when exiting the

internal boot ROM.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-53 NXP

Multiple Unlock commands may appear after the Authenticate CSF command. A feature will be

unlocked if specified in one or more Unlock commands. Table 23 lists the Unlock command

arguments.

Table 23. Unlock arguments

Argument name Description Valid values HAB4

Engine Engine to unlock SRTC, CAAM, SNVS and

OCOTP

M

Features Comma-separated list of features to

unlock

See Table 24 O

UID Device specific 64-bit UID

Required to unlock certain features,

must be absent for others (see Table

24).

U0,U1,... U7

with

Ui=0..255

UID bytes separated by commas

M/X

M = mandatory, O = optional, D = use default from Header if absent and X = not present

Table 24 shows valid Features values available in Init/Unlock commands for each Engine

argument.

Table 24. Valid feature values

Engine Features UID Init/Unlock command effect

SRTC X The Init command clears any failure status flags and clears the

low-power counters and timers if the SRTC is in Init state.

The Unlock command prevents the secure timer and monotonic

counter being locked if the SRTC is in Valid state

CAAM

MID X Leaves Job Ring and DECO master ID registers unlocked.

RNG X Leaves RNG state handle 0 uninstantiated, does not generate

descriptor keys, does not set the AES DPA mask, and does not

block state handle 0 test instantiation.

MFG X Keep manufacturing protection private key in CAAM internal

memory.

SNVS LP SWR X Leaves LP SW reset unlocked.

ZMK WRITE X Leaves Zeroisable Master Key write unlocked.

A-54 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

OCOTP FIELD RETURN M Leave Field Return activation unlocked.

SRK REVOKE X Leave SRK revocation unlocked.

SCS M Leave SCS register unlocked.

JTAG M Unlock JTAG using SCS HAB_JDE bit.

M = mandatory, O = optional, D = use default from Header if absent and X = not present

5.2.13.1 Unlock Examples

[Unlock]

 Engine = SRTC

[Unlock]

 Engine = CAAM

 Features = RNG

[Unlock]

 Engine = OCOTP

 Features = JTAG, SRK REVOKE

 UID = 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef

5.2.14 Install Certificate (AHAB only)

The Install Certificate command is optional.

The Install Certificate command converts a public key into the NXP format.

AHAB authenticates a Certificate from a previously installed verifying SRK and a hash of the

public key certificate.

There must be up to one Install Certificate command in a CSF. Table 9 lists the Install Certificate

command arguments.

Table 9. Install Certificate arguments

Argument

name
Description Valid values AHAB

File Public key certificate Valid file path M

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Table9

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-55 NXP

Permissions

Please refer to the AHAB

architecture specification for setting

this value correctly

8-bit bitmask M

Signature

Binary file containing the signature of

the NXP-format public key certificate.

This field has been added for the

HSM support.

Valid file path O

M = mandatory, O = optional

5.2.14.1 Install Certificate Examples

[Install Certificate]

File = "../crts/sgk1_crt.pem"

Permissions = 0x1

5.3 CSF Examples

This section provides some examples for HAB4 and AHAB CSF.

5.3.1 HAB4 CSF Example

Figure 18 is an example of a HAB4 CSF description. This example CSF description:

• Defines a version 4 CSF description.

• Overrides default engine ANY with DCP in Authenticate Data command

• Lists three blocks from image for signing.

[Header]

 Version = 4.0

 Security Configuration = Open

 Hash Algorithm = sha256

 Engine = DCP

 Engine Configuration = 0

 Certificate Format = X509

 Signature Format = CMS

[Install SRK]

 File = "TBL_1_sha256_tbl.bin"

 Source index = 0

[Install CSFK]

 File = "CSF1_1_pkcs1_pkcs1_sha256_1024_3_v3_usr_crt.bin"

[Authenticate CSF]

[Install Key]

 Verification index = 0

A-56 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

 Target index = 2

 File = "IMG1_1_pkcs1_pkcs1_sha256_1024_3_v3_usr_crt.bin"

whole line comment

[Authenticate Data] # part line comment

 Verification index = 2

 Engine = DCP

 Blocks = 0xf8009400 0x400 0x40 "MCUROM-OCRAM-ENG_img.bin", \

 0xf8009440 0x440 0x40 "MCUROM-OCRAM-ENG_img.bin", \

 0xf800a000 0x1000 0x8000 "MCUROM-OCRAM-ENG_img.bin"

Figure 18. Example HAB4 CSF Description File

5.3.2 HAB4 CSF Fast Authentication Example

Figure 19 is an example of a HAB4 CSF description for fast authentication. This example CSF

description:

• Defines a version 4 CSF description.

• Tells HAB to use fast authentication mechanism

• Lists single block from image for signing

#Illustrative Command Sequence File Description

[Header]

 Version = 4.1

 Hash Algorithm = sha256

 Engine = ANY

 Engine Configuration = 0

 Certificate Format = X509

 Signature Format = CMS

[Install SRK]

 File = "../crts/TBL_1_sha256+tbl.bin"

 Source index = 0

[Install NOCAK]

 File = "../crts/SRK1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate CSF]

#whole line comment

[Authenticate Data] # part line comment

 Verification index = 0

 Blocks = 0x877fb000 0x000 0x48000 "signed-uboot.bin"

Figure 19. Example HAB4 CSF Description File

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-57 NXP

5.3.3 HAB4 CSF Example for Encrypted Boot

Figure 20 is an example of a HAB version 4.1 CSF description demonstrating on how to use

Install Secret Key and Decrypt Data commands. This example CSF description:

• Defines a version 4.1 CSF description.

• Necessary blocks from image for signing.

• Install Secret Key command

• Blocks for encryption by CST and decryption by ROM/HAB

[Header]

 Version = 4.1

 Hash Algorithm = SHA256

 Engine Configuration = 0

 Certificate Format = X509

 Signature Format = CMS

 Engine = CAAM

 Engine Configuration = 0

[Install SRK]

 File = "../crts/SRK_1_2_3_4_table.bin"

 Source index = 0

[Install CSFK]

 File = "../crts/CSF1_1_sha256_4096_65537_v3_usr_crt.der"

[Authenticate CSF]

[Install Key]

 Verification index = 0

 Target index = 2

 File = "../crts/IMG1_1_sha256_4096_65537_v3_usr_crt.der"

[Authenticate data]

 Verification index = 2

 Blocks = 0x27800400 0x400 800 "u-boot-mx6q-arm2_padded.bin"

[Install Secret Key]

 Verification index = 0

 Target index = 0

 Key = "dek.bin"

 Key Length = 128

 Blob address = 0x27831000

[Decrypt Data]

 Verification index = 0

 Mac Bytes = 16

 Blocks = 0x27800720 0x720 0x2E8E0 "u-boot-mx6q-arm2_padded.bin"

Figure 20. Example HAB4 CSF Description File with Decrypt Data Command

A-58 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

5.3.4 AHAB CSF Example

Figure 18 is an example of an AHAB CSF description. This example CSF description:

[Header]

 Target = AHAB

 Version = 1.0

[Install SRK]

 # Output of srktool

 File = "…/crts/srk_table.bin"

 # Public key certificate in PEM or DER format

 Source = "…/crts/srk1_crt.pem"

 # Index of SRK in SRK table

 Source index = 0

 # Origin of SRK table

 Source set = OEM

 # Revoked SRKs

 Revocations = 0x0

[Authenticate Data]

 # Output of mkimage

 File = "flash.bin"

 # Offsets = Container header Signature block (printed out by mkimage)

 Offsets = 0x400 0x490

Figure 18. Example AHAB CSF Description File

5.3.5 AHAB CSF with Certificate Example

Figure 19 is an example of an AHAB CSF description with the Certificate. This example CSF

description:

[Header]

 Target = AHAB

 Version = 1.0

[Install SRK]

 # Output of srktool

 File = "…/crts/srk_table.bin"

 # Public key certificate in PEM or DER format

 Source = "…/crts/srk3_crt.pem"

 # Index of SRK in SRK table

 Source index = 2

 # Origin of SRK table

 Source set = OEM

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure18
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure19

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-59 NXP

 # Revoked SRKs

 Revocations = 0x1

[Install Certificate]

 # Public key certificate in PEM or DER format

 File = "…/crts/sgk3_crt.pem"

 Permissions = 0x1

[Authenticate Data]

 # Output of mkimage

 File = "flash.bin"

 # Offsets = Container header Signature block (printed out by mkimage)

 Offsets = 0x400 0x710

Figure 19. Example AHAB CSF Description File

5.3.6 AHAB CSF Example for encrypted boot

Figure 18 is an example of an AHAB CSF description for encrypted boot. This example CSF

description:

[Header]

 Target = AHAB

 Version = 1.0

[Install SRK]

 # Output of srktool

 File = "…/crts/srk_table.bin"

 # Public key certificate in PEM or DER format

 Source = "…/crts/srk1_crt.pem"

 # Index of SRK in SRK table

 Source index = 0

 # Origin of SRK table

 Source set = OEM

 # Revoked SRKs

 Revocations = 0x0

[Authenticate Data]

 # Output of mkimage

 File = "flash.bin"

 # Offsets = Container header Signature block (printed out by mkimage)

 Offsets = 0x400 0x490

[Install Secret Key]

 Key = "data_encryption.key"

 Key Length = 128

 Key Identifier = 0x4a534d21

 # Image index 0 not encrypted

 Image Indexes = 0xFFFFFFFE

Figure 18. Example AHAB CSF Description File

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure18

A-60 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

Appendix A CST Architecture

The NXP CST is a reference implementation and is sufficient for most use cases. The tool has a

Front End supporting the NXP proprietary operations. There are two reference Back End

implementations that provide the cryptographic services to the Front End through the Adaption

Layer. The first Back End uses the OpenSSL library [1] for performing all cryptographic

operations related to digital signature generation and encryption and accesses key material

directly in the filesystem. The second Back End uses an OpenSSL engine supporting a PKCS#11

interface. The key material is referenced with token identifiers in the CSF description files.

Please refer to the A1.3 section Using Code-Signing Tool with Hardware Security Module for an

example using the PKC#11 backend with a provider.

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-61 NXP

Figure B-1. Overview of Reference CST components

A.1 Customizing the Back End

There may be instances where an alternate back-end interface is required to provide cryptographic

services. In such cases it is possible to adapt CST reference implementation to the alternate

services. To accommodate this NXP has architected the CST in two parts a Front End and a Back

End. The Front End contains all the NXP proprietary operations of the CST with the Back End

containing all standard cryptographic operations.

In addition to the CST executables, the package includes the source code. It is located in the

package’s code/cst directory. A Dockerfile is included to create a build environment or as a

reference for a build host’s dependency requirements.

A.1.1 Back End API
The Back End must implement three API’s used by the Front End.

A.1.1.1 gen_sig_data()

int32_t gen_sig_data(const char* in_file,

 const char* cert_file,

 hash_alg_t hash_alg,

 sig_fmt_t sig_fmt,

 uint8_t* sig_buf,

 size_t *sig_buf_bytes,

 func_mode_t mode);

The CST Front End uses this API to generate signature data.

in_file Input data
cert_file Signer certificate file
hash_alg Hash algorithm
sig_fmt Signature format
sig_buf Signature buffer
sig_buf_bytes Size of signature buffer
Mode Custom mode

A.1.1.2 gen_auth_encrypted_data()

int32_t gen_auth_encrypted_data(const char* in_file,

 const char* out_file,

 aead_alg_t aead_alg,

 uint8_t *aad,

A-62 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

 size_t aad_bytes,

 uint8_t *nonce,

 size_t nonce_bytes,

 uint8_t *mac,

 size_t mac_bytes,

 size_t key_bytes,

 const char* cert_file,

 const char* key_file,

 int reuse_dek);

The CST Front End uses this generate authenticated encrypted data. It generates an encryption

key and uses it to encrypt plaintext input data. Optionally, it can use an input key instead of

generating a key.

A generate encryption key can be optionally encrypted using a certificate for secure transport.

in_file Plaintext input data
out_file Output cipher text
aead_alg AES_CCM or AES_CCB
Aad Additional authenticated data
aad_bytes Size of aad
Nonce Nonce bytes to return
nonce_bytes Size of nonce
Mac Output MAC
mac_bytes Size of MAC
key_bytes Size of symmetric key
cert_file Certificate file for DEK encryption
key_file Input key file
reuse_dek Use existing input key

A.1.1.3 read_certificate()

X509* read_certificate(const char* reference);

Reads X.509 certificate data from the provided certificate file.

Reference Certificate file

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-63 NXP

• Any new Back End implementation must follow implement these APIs in an equivalent

adaptation layer corresponding to the new cryptographic services.

• For reference the source code and header files for the NXP reference implementation.

• To use a new method for public key generation, replace the key generation scripts with the

new implementation.

NOTE

Although the Back End may replace OpenSSL for code signing, SA

and CA support, the CST Front End still makes use of OpenSSL for

some non-code signing operations. This means that when linking

library components together to generate a CST executable an

OpenSSL library must also be included. CST uses OpenSSL 3.2.0

which is available at [1].

A.2 Front End References to Code Signing Keys

When replacing the CST Back-End it is important to keep in mind that he CST Front End refers

to code signing keys and certificates using file names. These are the key filenames that correspond

to the RSA public key certificate and private key files generated by the CST PKI scripts. However,

filenames may not be the native method for referencing keys in a new replacement Back End

service. If this is the case, then the new Adaptation Layer is responsible for converting to and from

file name references.

This is also true for Data Encryption Keys that the CST generates for encrypting images.

A.3 Using Code-Signing Tool with Hardware Security

Module
This section delivers essential information for users seeking effective utilization of CST with an

HSM.

The CST’s default backend uses OpenSSL to perform HAB and AHAB signature generation and

data encryption. OpenSSL exposes an Engine API which makes it possible to plug in alternative

implementations for its native cryptographic operations. Libp11 (openssl-pkcs11) serves as the

PKCS#11 engine used by CST to access PKCS#11 enabled HSMs. Encompassing necessary

functions for session and token management, certificate handling, signing, and hashing, it acts as

a liaison between vendor PKCS#11 modules and the OpenSSL engine API. This engine can

interface directly with a PKCS#11 provider or leverage the p11-kit proxy module for system-wide

PKCS#11 module access. For additional information, consult [8].

Step 1 - Build and run Docker.hsm image

A-64 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

In the root folder of the package, you'll find a Dockerfile.hsm that facilitates the installation of

dependencies, enabling an easy setup for trying out the CST with pkcs11 backend.

$ docker build -t cst:hsm --build-arg http_proxy=$http_proxy --build-

arg hostUserName=$USER --build-arg hostUID=$(id -u) --build-arg

hostGID=$(id -g) -f Dockerfile.hsm .

Launch a shell that can be used to run the commands as user `softhsm` for the subsequent steps:

$ docker run -v $(pwd):/home/$USER/cst -w /home/$USER/cst --rm -it -

-entrypoint bash cst:hsm

Step 2 – Creating a Token

The pkcs11-tool command is typically used for interacting with PKCS#11 tokens. To initialize a

token, run the following commands:

$ pkcs11-tool --module $PKCS11_MODULE_PATH --init-token --init-pin --so-

pin=$SO_PIN --new-pin=$USR_PIN --label="CST-HSM-DEMO" --pin=$USR_PIN --

login

Using slot 0 with a present token (0x0)

Token successfully initialized

User PIN successfully initialized

PKCS11_MODULE_PATH should contain the path or name of the PKCS#11 module. In the

example, it is set to the path of the p11-kit and can be changed to be set to the path of SoftHSM,

depending on the desired PKCS#11 configuration. The token label CST-HSM-DEMO will be used

later with CST to locate certificates and keys needed to sign images.

Step 3 – Generate a PKI tree

To generate PKI tree for AHAB or HABv4, run the hsm_ahab_pki_tree.sh or

hsm_hab4_pki_tree.sh script accordingly in interactive mode. The script will prompt you with a

series of questions, and it is expected that you provide answers to guide the generation process.

$ cd keys/

$./hsm_hab4_pki_tree.sh or ./hsm_ahab_pki_tree.sh

Example:

$./hsm_hab4_pki_tree.sh -existing-ca n -use-ecc n -kl 2048 -duration 10

-num-srk 4 -srk-ca y

You can list the objects stored on the token by using:

Code-Signing Tool User’s Guide, Rev. 3.4.1

A-65 NXP

$ pkcs11-tool --module $PKCS11_MODULE_PATH -l --pin $USR_PIN --list-

objects

We anticipate finding both keys and certificates within the token.

Step 4 – Generate SRK table and fuse

Create SRK table and e-fuse files for HAB4 or AHAB, similar to using the default CST backend,

by specifying paths to the SRK certificate:

$ cd ../crts/

$../linux64/bin/srktool ...

Example:

$../linux64/bin/srktool -h 4 -t SRK_1_2_3_4_table.bin -e

SRK_1_2_3_4_fuse.bin -d sha256 -c

./SRK1_sha256_2048_65537_v3_ca_crt.pem,./SRK2_sha256_2048_65537_v3_ca_c

rt.pem,./SRK3_sha256_2048_65537_v3_ca_crt.pem,./SRK4_sha256_2048_65537_

v3_ca_crt.pem -f 1

Step 5 – Create Command Sequence File

CST with pkcs11 backend finds keys and certificates in a HSM using PKCS#11 URIs. This URI

format is defined in the "PKCS #11 URI Scheme" specification, which is described in RFC 7512

[9]. In this example, the CSF instructs CST to access the SRK certificate with the identifier or

label SRK1_sha384_secp384r1_ca in the PKCS#11 token/module named CST-HSM-DEMO, and

it's providing the PIN value 12345678 as part of the authentication process.

[Install CSFK]

 File = "pkcs11:token=CST-HSM-

DEMO;object=CSF1_1_sha256_2048_65537_v3_usr;type=cert;pin-

value=${USR_PIN}"

URI can be broken down as follows:

• Token: CST-HSM-DEMO: This specifies the PKCS#11 module or token being used, in

this case, it's named CST-HSM-DEMO.

• Object: CSF1_1_sha256_2048_65537_v3_usr: Indicates the specific object within the

token. In this example, it's referring to an object with the identifier or label

CSF1_1_sha256_2048_65537_v3_usr.

• Type: cert: Specifies that the object is a certificate.

• Pin-value: This is an optional parameter, representing the PIN needed to access the

specified object.

Step 6 – Sign using pkcs11 back-end

The final step is to invoke CST with the -b switch, specifying the pkcs11 backend.

A-66 Copyright 2017-2024 NXP

 Code-Signing Tool User’s Guide, Rev. 3.4.1

$../linux64/bin/cst -b pkcs11 -i example.csf -o signed-example.bin

CSF Processed successfully and signed data available in signed-

example.bin

