

COPYRIGHT 2018-2019 NXP

High Assurance Boot Version 4
Application Programming

Interface Reference Manual

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • i

Table of Contents

1 About This Book .. 1

1.1 Audience ... 1
1.2 Organization .. 1
1.3 Definitions, Acronyms and Abbreviations .. 1
1.4 Revision History .. 2

2 Introduction ... 3

3 Functions .. 4

3.1 Entry .. 4
3.2 Get Version ... 5
3.3 Check Target ... 6
3.4 Authenticate Image ... 7

3.4.1 Authenticate Image Loader Callback .. 9
3.5 Authenticate Image no DCD ... 11
3.6 Authenticate Container .. 11
3.7 Run DCD ... 12
3.8 Run CSF .. 14
3.9 Assert ... 16
3.10 Report event .. 17
3.11 Report status .. 18
3.12 Failsafe mode .. 19
3.13 Exit .. 20

4 Data Structures .. 22

4.1 Image Vector Table ... 23
4.2 Device Configuration Data .. 23
4.3 Command Sequence File ... 23

4.3.1 Write Data ... 25
4.3.2 Check Data .. 27
4.3.3 NOP ... 28
4.3.4 Set .. 29
4.3.5 Initialize ... 31
4.3.6 Unlock ... 32
4.3.7 Install Key ... 33
4.3.8 Authenticate Data .. 39

4.4 Events .. 42
4.5 ROM Vector Table .. 43

5 Security Hardware .. 46

5.1 Security Controller (SCC) ... 46
5.2 Data Co-Processor (DCP) ... 47
5.3 Run-Time Integrity Checker (RTIC) ... 48
5.4 Symmetric, Asymmetric, Hash and Random Accelerator (SAHARA)....................... 49
5.5 Secure Real Time Clock (SRTC) .. 51
5.6 Cryptographic Accelerator and Assurance Module (CAAM) 52
5.7 Secure Non-Volatile Storage (SNVS) ... 55
5.8 Software .. 58

6 Constants .. 61

6.1 Header ... 61

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • ii

6.2 Structure .. 61
6.3 Command .. 62
6.4 Protocol ... 62
6.5 Algorithms ... 62
6.6 Engine ... 63
6.7 Audit Events .. 65

6.7.1 Reason ... 65
6.7.2 Context .. 65

6.8 Configuration, Status and State ... 66
6.8.1 Configuration .. 66
6.8.2 Status ... 66
6.8.3 State ... 67

Appendix A: Interpreting HAB Event Data from Report_Event() API 68

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 1

1 About This Book

This manual provides the details on the Application Programming Interface (API) for the NXP

High Assurance Boot (HAB) library. The HAB library is included as a component of the boot

ROM on certain NXP processors. The HAB API allows image code, external to the ROM, to

make calls back to the HAB for authenticating additional boot stages.

1.1 Audience

This document describes the details of the HAB API for engineers architecting and

implementing a secure boot. Note that this document describes the API for HAB version 4

only. For information on the HAB version 3 API please refer to the system boot chapter of the

relevant NXP processor reference manual.

1.2 Organization

This manual is divided into the following sections:

• Introduction – provides an overview of the HAB API

• Functions – provides detailed description of the HAB API functions

• Data Structures – describes the data structures used by HAB including Device

Configuration and Command Sequence File commands.

• Security Hardware – describes the security hardware block used by HAB

• Constants – defines constant values that are used by the HAB API

• Appendix A: Interpreting HAB Event Data from Report_Event() API

1.3 Definitions, Acronyms and Abbreviations

The following list defines the acronyms and abbreviations used in this document.

API Applications Programming Interface\

CA Certificate Authority

CAAM Cryptographic Accelerator and Assurance Module

CSF Command Sequence File

DCD Device Configuration Table

DCP Data Co-Processor

HAB High Assurance Boot version 4

IVT Image Vector Table

RTIC Run-Time Integrity Checker

RVT ROM Vector Table

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 2

SCC Security Controller

SAHARA Symmetric, Asymmetric, Hash and Random Accelerator

SNVS Secure Non-Volatile Storage

SRK Super Root Key

1.4 Revision History

Date Version Description

Nov. 5, 2012 1.0 • Initial Version – covers

HAB4.1

Nov. 27, 2012 1.1 • Fix parameter description for

Secret Key Blob data structure

• Minor update to Authenticate

Data command variables

• Fix example 2 in Appendix A

Oct. 10, 2014 1.2 • Minor updates for

report_event and report_status

APIs

Apr. 4, 2018 1.3 • Update supported APIs:

Authenticate Data no DCD,

Get Version, Authenticate

Container

• Remove Set MID command,

replace Unlock RNG by Init

RNG command

March 29, 2019 1.4 • Fix parameters description for

Run CSF API

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 3

2 Introduction

The HAB library included in on-chip ROMs of certain NXP processors provides a means to

authenticate and, in some cases, even encrypt execution images. This secure boot process starts

with ROM authenticating the first image in the boot flow which is typically a bootloader such as

U-boot. The HAB library provides several APIs for image authentication which can be called

from boot images such as U-boot to further extend the secure boot chain. This is illustrated in

the figure below.

Figure 1 Secure Boot with HAB

Boot components such as U-boot can use these APIs by locating the ROM Vector Table (RVT)

which is a table of the HAB API addresses. The RVT address located in ROM is specific to

each NXP processor. To determine the address of the RVT consult the System Boot Chapter of

the NXP processor Reference Manual you are using.

The remainder of this document provides the details for all HAB API functions, HAB

commands and engines used by HAB. Note that even though all APIs are documented here

NXP recommends using the hab_rvt.authenticate_image() whenever possible. This is instead of

calling the other APIs separately ensuring all the proper authentication steps are performed.

For additional details and examples illustrating the use of the HAB API please see application

notes AN4555 and AN4581 available for download from www.NXP.com.

Application
Call Driver

OS
Startup

Driver

Bootloader ROM

Reset

Security
HW Generic Boot

Component

User Mode Apps

Hardware

HAB
Library

Secure Boot w/
HAB Component

CSF
A
P
I

CSF

OS Component

file:///C:/Users/B46268/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/EVWKR4RI/www.freescale.com

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 4

3 Functions

This section describes each of the HAB API functions. The addresses of the API functions are

collected in a data structure called the ROM Vector Table (RVT). The RVT is placed at a fixed

location in ROM. Consult the System Boot chapter of Reference Manual for the relevant NXP

process for the RVT address.

3.1 Entry

hab_status_t(*hab_rvt::entry)(void)

Enter and initialize HAB library

Purpose:
This function initializes the HAB library and Security Hardware plugins. It is intended for

use by post-ROM boot stage components, via the ROM Vector Table, prior to calling any

other HAB functions other than hab_rvt.report_event() and hab_rvt.report_status().

Operation:
This function performs the following operations every time it is called:

• Initialize the HAB library internal state

• Initialize the internal secret key store (cleared at the next hab_rvt.exit())

• Run the entry sequence of each available Security Hardware plugin

When first called from boot ROM, this function also performs the following

operations prior to those given above:

• Initialize the internal public key store (persists beyond hab_rvt.exit())

• Run the self-test sequence of each available Security Hardware plugin

• If a state machine is present and enabled, change the security state as follows:

o If the IC is configured as HAB_CFG_OPEN or HAB_CFG_RETURN,

move to HAB_STATE_NONSECURE

o If the IC is configured as HAB_CFG_CLOSED, move to

HAB_STATE_TRUSTED

o Otherwise, leave the security state unchanged

If any failure occurs in the operations above:

• An audit event is logged

• All remaining operations are abandoned (except that all Security Hardware self-

test and entry sequences are still executed)

• If a state machine is present and enabled, the security state is set as follows:

o Move to HAB_STATE_NONSECURE. Note that if a security violation

has been detected by the HW, the final state will be

HAB_STATE_FAIL_SOFT or HAB_STATE_FAIL_HARD depending

on the HW configuration.

Warning:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 5

Boot sequences may comprise several images with each launching the next as well as

alternative images should one boot device or boot image be unavailable or unusable. The

authentication of each image in a boot sequence must be bracketed by its own

hab_rvt.entry() ... hab_rvt.exit() pair in order to ensure that security state information

gathered for one image cannot be misapplied to another image.

Post Condition:

• HAB library internal state is initialized.

• Available Security Hardware plugins are initialized.

• If a failure or warning occurs during Security Hardware plugin initialization, an audit

event is logged with the relevant Engine tag. The status and reason logged are described

in the relevant Security Hardware plugin documentation.

• Security state is initialized, if a state machine is present and enabled.

Return values:

• HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED, although

unsuccessful operations will still generate audit log events,

• HAB_SUCCESS on other ICs if all commands completed without failure (even if

warnings were generated),

• HAB_SUCCESS otherwise

3.2 Get Version

uint32_t(* hab_rvt::get_version)(void)

Get HAB version.

Purpose:

This function returns the version of the HAB library. It is intended for use by ROM boot

stage, via the ROM Vector Table.

Operation:

This function performs the following operations:

• Return HAB library version.

Return values:

HAB library version 32-bit unsigned integer

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 6

3.3 Check Target

hab_status_t(* hab_rvt::check_target)(hab_target_t type,

const void *start,

size_t bytes)

Check target address.

Purpose:

This function reports whether a given target region is allowed for either peripheral

configuration or image loading in memory. It is intended for use by post-ROM boot stage

components, via the ROM Vector Table, in order to avoid configuring security-sensitive

peripherals, or loading images over sensitive memory regions or outside recognized

memory devices in the address map.

Operation:

The lists of allowed target regions vary by IC and core and should be taken from the

relevant NXP Processor Reference Manual.

Parameters:

[in] type Type of target (memory or peripheral)

[in] start Address of target region

[in] bytes Size of target region

Postcondition:
If the given target region goes beyond the allowed regions, an audit event is logged with

status HAB_FAILURE and reason HAB_INV_ADDRESS, together with the call

parameters. See the Event record documentation for details.

For successful commands, no audit event is logged.

Return values:

• HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED, although

unsuccessful operations will still generate audit log events,

• HAB_SUCCESS if the given target region lies wholly within the allowed regions for the

requested type of target,

• HAB_FAILURE otherwise

Definitions:

enum hab_target {

 HAB_TGT_MEMORY = 0x0f, /* Check memory white list */

 HAB_TGT_PERIPHERAL = 0xf0, /* Check peripheral white list*/

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 7

 HAB_TGT_ANY = 0x55, /**< Check memory & peripheral white list */

} hab_target_t

3.4 Authenticate Image

hab_image_entry_f(*hab_rvt::authenticate_image)(

uint8_t cid,

ptrdiff_t ivt_offset,

void **start,

size_t *bytes,

hab_loader_callback_f

loader)

Authenticate image.

Purpose:
This function combines DCD, CSF and Assert functions in a standard sequence in order to

authenticate a loaded image. It is intended for use by post-ROM boot stage components, via

the ROM Vector Table. Support for images partially loaded to an initial location is provided

via a callback function.

Important note:

The DCD based SoC initialization mechanism should not be used once the boot process

exits the ROM.

The non-ROM user is required to only use the Authenticate Image no DCD function if

available, or make sure a null DCD pointer is passed as argument.

Starting from HAB 4.3.7, the Run DCD function, as well as the Authenticate Image

function called with a non-null DCD pointer, will return an error if called outside of the

boot ROM.

Older versions of HAB will run DCD commands if available, this could lead to an incorrect

authentication boot flow.

Operation:

This function performs the following sequence of operations:

• Check that the initial image load addresses pass hab_rvt.check_target().

• Check that the IVT offset lies within the initial image bounds.

• Check that the Image Vector Table self and entry pointers are not NULL

• Check the Image Vector Table header for consistency and compatibility.

• If provided in the Image Vector Table, calculate the Device Configuration Data

initial location, check that it lies within the initial image bounds, and run the Device

Configuration Data commands.

• If provided in the Image Vector Table, calculate the Boot Data initial location and

check that it lies within the initial image bounds.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 8

• If provided in the parameters, invoke the callback function with the initial image

bounds and initial location of the Image Vector Table Boot Data.

From this point on, the full image is assumed to be in its final location. The following

operations will be performed on all IC configurations, but will be only enforced on an IC

configured as HAB_CFG_CLOSED:

• Check that the final image load addresses pass hab_rvt.check_target().

• Check that the CSF lies within the image bounds, and run the CSF commands.

• Check that all of the following data have been authenticated (using their final

locations):

o IVT;

o DCD (if provided);

o Boot Data (initial byte if provided);

o Entry point (initial word).

Parameters:

[in] cid Caller ID, used to identify which SW issued this call.

[in] ivt_offset Address of target region

[in,out] start Initial (possibly partial) image load address on entry. Final

image load address on exit.

[in,out] bytes Initial (possibly partial) image size on entry. Final image

size on exit.

[in] loader Callback function to load the full image to its final load

address. Set to NULL if not required.

Remarks:

• Caller ID may be bound to signatures verified using keys installed with

HAB_CMD_INS_KEY_CID flag. See Install Key.

• A loader callback function may be supplied even if the image is already loaded to its

final location on entry.

• Boot Data (boot_data in Image Vector Table) will be ignored if the loader callback

function point is set to Null.

Warnings:

• The loader callback function should lie within existing authenticated areas.

• It is the responsibility of the caller to check the initial image load addresses

using hab_rvt.check_target() prior to loading the initial image and calling this

function.

• After completion of hab_rvt.authenticate_image(), the caller should test using

hab_rvt.assert() that the Boot Data was authenticated.

• After completion of hab_rvt.authenticate_image(), the caller should test using

hab_rvt.assert() that the Boot Data was authenticated.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 9

Postconditions:
The post-conditions of the functions hab_rvt.check_target(), hab_rvt.run_dcd(),

hab_rvt.run_csf() and hab_rvt.assert() apply also to this function. In particular, any audit

events logged within the given functions have the context field appropriate to that function

rather than HAB_CTX_AUTHENTICATE. In addition, the side-effects and post-conditions

of any callback function supplied apply.

If a failure or warning occurs outside these contexts, an audit event is logged with status:

• HAB_FAILURE, with further reasons:

o HAB_INV_ADDRESS: initial or final image addresses outside allowed

regions

o HAB_INV_ADDRESS: IVT, DCD, Boot Data or CSF outside image

bounds

o HAB_INV_ADDRESS: IVT self or entry pointer is NULL

o HAB_INV_CALL: hab_rvt.entry() not run successfully prior to call

o HAB_INV_IVT: IVT malformed

o HAB_INV_IVT: IVT version number is less than HAB library version

o HAB_INV_RETURN: Callback function failed

Return values:

entry field from Image Vector Table on an IC not configured as

HAB_CFG_CLOSED provided that the following conditions are met (other

unsuccessful operations will generate audit log events):

o the start pointer and the pointer it locates are not NULL

o the initial Image Vector Table location is not NULL

o the Image Vector Table Header (given in the hdr field) is valid

o the final Image Vector Table location (given by the self field) is not NULL

o any loader callback completed successfully

entry field from Image Vector Table on other ICs if all operations completed without

failure (even if warnings were generated),

NULL otherwise

Definitions:

/* This typedef serves as the return type for

 * hab_rvt.authenticate_image(). It specifies a void-void function

 * pointer, but can be cast to another function

 * pointer type if required.

 */

typedef void (*hab_image_entry_f)(void);

3.4.1 Authenticate Image Loader Callback

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 10

hab_status_t(*)hab_loader_callback_f(void **start,

size_t *bytes,

const void *boot_data)

Loader callback.

Purpose:
This function must be supplied by the library caller if required. It is intended to finalize

image loading in those boot modes where only a portion of the image is loaded to a

temporary initial location prior to device configuration.

Operation:

This function is called during hab_rvt.authenticate_image() between running the Device

Configuration Data and Command Sequence File. The operation of this function is defined

by the caller.

Parameters:

[in,out] start Initial (possibly partial) image load address on entry. Final

image load address on exit.

[in,out] bytes Initial (possibly partial) image size on entry. Final image

size on exit.

[in] boot_data Initial Image Vector Table Boot Data load address.

Remarks:
The interpretation of the Boot Data is defined by the caller. Different boot components or

modes may use different boot data, or even different loader callback functions.

Warnings:

• It should not be assumed by this function that the Boot Data is valid or authentic.

• It is the responsibility of the loader callback to check the final image load addresses

using hab_rvt.check_target() prior to copying any image data.

Preconditions:

• The (possibly partial) image has been loaded in the initial load address, and the

Boot Data is within the initial image.

• The Device Configuration Data has been run, if provided.

Return values:

• HAB_SUCCESS if all operations completed successfully,

• HAB_FAILURE otherwise

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 11

3.5 Authenticate Image no DCD

hab_image_entry_f(*hab_rvt::authenticate_image_no_dcd)(

uint8_t cid,

ptrdiff_t ivt_offset,

void **start,

size_t *bytes,

hab_loader_callback_f

loader)

Authenticate image without executing the DCD commands.

Purpose:
This function is identical to the Authenticate Image function, except it does not run the

DCD. Please refer to the Authenticate Image chapter for more detailed information.

3.6 Authenticate Container

hab_status_t(*hab_rvt:: authenticate_container)(

uint8_t cid,

ptrdiff_t ivt_offset,

void **start,

size_t *bytes,

hab_loader_callback_f

loader,

uint32_t srkmask,

int skip_dcd)

Authenticate container.

Purpose:
This function is identical to the Authenticate Image function, except it supports different

Image Vector Table versions, it authenticates the contents by using a specified SRK set, and

it can skip the DCD commands. Please refer to the Authenticate Image chapter for more

detailed information.

Modified and additional parameters:

…

[in] bytes Initial (possibly partial) image size on entry.

…

[in] srkmask Mask of bits that indicate which SRK set is allowed to

authenticate the contents of this container.

[in] skip_dcd Set to disable DCD processing.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 12

Return values:

HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED provided that the

following conditions are met (other unsuccessful operations will generate audit

log events):

o the start pointer and the pointer it locates are not NULL

o the initial Image Vector Table location is not NULL

o the Image Vector Table Header (given in the hdr field) is valid

o the final Image Vector Table location (given by the self field) is not NULL

o any loader callback completed successfully

HAB_SUCCESS on other ICs if all operations completed without failure (even if

warnings were generated),

HAB_FAILURE otherwise

3.7 Run DCD

hab_status_t(* hab_rvt::run_dcd)(const uint8_t *dcd)

Execute boot configuration script.

Purpose:
This function configures the IC based upon a Device Configuration Data table. It is intended

for use by post-ROM boot stage components, via the ROM Vector Table. This function may

be invoked as often as required for each boot stage.

The difference between the configuration functionality in this function and

hab_rvt.run_csf() arises because the Device Configuration Data table is not authenticated

prior to running the commands. Hence, there is a more limited range of commands allowed,

and a limited range of parameters to allowed commands.

Important note:

The DCD based SoC initialization mechanism should not be used once the boot process

exits the ROM.

The non-ROM user is required to not use the Run DCD function.

Starting from HAB 4.3.7, the Run DCD function, as well as the Authenticate Image

function called with a non-null DCD pointer, will return an error if called outside of the

boot ROM.

Older versions of HAB will run DCD commands if available, this could lead to an incorrect

authentication boot flow.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 13

Operation:

This function performs the following operations:

• Checks the Header for compatibility and consistency

• Makes an internal copy of the Device Configuration Data table

• Executes the commands in sequence from the internal copy of the Device

Configuration Data

If any failure occurs, an audit event is logged, and all remaining operations are abandoned.

Parameters:

[in] dcd Address of the Device Configuration Data.

Warnings:

It is the responsibility of the caller to ensure that the dcd parameter points to a valid memory

location.

The Device Configuration Data must be authenticated by a subsequent Command Sequence

File command prior to launching the next boot image, in order to avoid unauthorized

configurations which may subvert secure operation. Although the content of the next boot

stage's CSF may be out of scope for the hab_rvt.run_dcd() caller, it is possible to enforce

this constraint by using hab_rvt.assert() to ensure that both the DCD and any pointers used

to locate it have been authenticated.

Each invocation of hab_rvt.run_dcd() must occur between a pair of hab_rvt.entry() and

hab_rvt.exit() calls, although multiple hab_rvt.run_dcd() calls (and other HAB calls) may be

made in one bracket. This constraint applies whether hab_rvt.run_dcd() is successful or not:

a subsequent call to hab_rvt.exit() is required prior to launching the authenticated image or

switching to another boot target.

Postconditions:

Many commands may cause side-effects. See the Device Configuration Data

documentation.

If a failure or warning occurs within a command handler, an audit event is logged with the

offending command, copied from the DCD. The status and reason logged are described in

the relevant command documentation.

For other failures or warning, the status logged is:

• HAB_WARNING, with further reasons:

• HAB_UNS_COMMAND: unsupported command encountered, where DCD version

and HAB library version differ

• HAB_FAILURE, with further reasons:

o HAB_INV_ADDRESS: NULL dcd parameter

o HAB_INV_CALL: hab_rvt.entry() not run successfully prior to call

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 14

o HAB_INV_COMMAND: command not allowed in DCD

o HAB_UNS_COMMAND: unrecognized command encountered, where

DCD version and HAB library version match

o HAB_INV_DCD: DCD malformed or too large

o HAB_INV_DCD: DCD version number is less than HAB library version

Return values:

• HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED, although

unsuccessful operations will still generate audit log events,

• HAB_SUCCESS on other ICs if all commands completed without failure (even if

warnings were generated),

• HAB_FAILURE otherwise

3.8 Run CSF

 hab_status_t(* hab_rvt::run_csf)(const uint8_t *csf,

uint8_t cid,

uint32_t srkmask)

Execute an authentication script.

Purpose:
This function authenticates SW images and configures the IC based upon a Command

Sequence File. It is intended for use by post-ROM boot stage components, via the ROM

Vector Table. This function may be invoked as often as required for each boot stage.

Operation:

This function performs the following operations:

• Checks the Header for compatibility and consistency

• Makes an internal copy of the Command Sequence File

• Executes the commands in sequence from the internal copy of the Command

Sequence File

The internal copy of the Command Sequence File is authenticated by an explicit command

in the sequence. Prior to authentication, a limited set of commands is available to:

• Install a Super-Root key (unless previously installed)

• Install a CSF key (unless previously installed)

• Specify any variable configuration items

• Authenticate the CSF

After CSF authentication, the full set of commands is available.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 15

If any failure occurs, an audit event is logged, and all remaining operations are abandoned.

Parameters:

[in] csf Address of the Command Sequence File

[in] cid Carrer ID, used to identify which SW issued this call.

[in] srkmask Mask of bits that indicates which SRK set is allowed to

authenticate the contents of this CSF (bit 0 = OEM / bit 1 =

NXP). If srkmask is equal to 0, HAB uses OEM as default.

This argument was added in HAB 4.3.0.

Remarks:

Caller ID may be bound to signatures verified using keys installed with

HAB_CMD_INS_KEY_CID flag. See Install Key command for details.

Warnings:

It is the responsibility of the caller to ensure that the csf parameter points to a valid memory

location.

Each invocation of hab_rvt.run_csf() must occur between a pair of hab_rvt.entry() and

hab_rvt.exit() calls, although multiple hab_rvt.run_csf() calls (and other HAB calls) may be

made in one bracket. This constraint applies whether hab_rvt.run_csf() is successful or not:

a subsequent call to hab_rvt.exit() is required prior to launching the authenticated image or

switching to another boot target.

Postconditions:

Many commands may cause side-effects. See the Command Sequence File documentation.

In particular, note that keys installed by the Command Sequence File remain available for

use in subsequent operations.

If a failure or warning occurs within a command handler, an audit event is logged with the

offending command, copied from the CSF. The status and reason logged are described in

the relevant command documentation.

For other failures or warning, the status logged is:

• HAB_WARNING, with further reasons:

o HAB_UNS_COMMAND: unsupported command encountered, where CSF

version and HAB library version differ

• HAB_FAILURE, with further reasons:

o HAB_INV_ADDRESS: NULL csf parameter

o HAB_INV_CALL: hab_rvt.entry() not run successfully prior to call

o HAB_INV_COMMAND: command not allowed prior to CSF

authentication

o HAB_UNS_COMMAND: unrecognized command encountered, where

CSF version and HAB library version match

o HAB_INV_CSF: CSF not authenticated

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 16

o HAB_INV_CSF: CSF malformed or too large

o HAB_INV_CSF: CSF version number is less than HAB library version

Return values:

• HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED, although

unsuccessful operations will still generate audit log events,

• HAB_SUCCESS on other ICs if all commands completed without failure (even if

warnings were generated),

• HAB_FAILURE otherwise

3.9 Assert

 hab_status_t(* hab_rvt::assert)(hab_assertion_t type,

const void *data,

uint32_t count)

Test an assertion against the audit log.

Purpose:
This function allows the audit log to be interrogated. It is intended for use by post-ROM

boot stage components, via the ROM Vector Table, to determine the state of authentication

operations. This function may be invoked as often as required for each boot stage.

Operation:

This function checks the required assertion as detailed below.

Parameters:

[in] type Assertion type

[in] data Assertion data

[in] count Data size or count

Memory block authentication:

For HAB_ASSERT_BLOCK assertion type (defined as 0x0), hab_rvt.assert() checks that

the given memory block has been authenticated after running a CSF. The parameters are

interpreted as follows:

• data: memory block starting address

• count: memory block size (in bytes)

A simple interpretation of "memory block has been authenticated" is taken, such that the

given block must lie wholly within a single contiguous block authenticated while running a

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 17

CSF. A given memory block covered by the union of several neighboring or overlapping

authenticated blocks could fail the test with this interpretation, but it is assumed that such

cases will not arise in practice.

Postconditions:

If the assertion fails, an audit event is logged with status HAB_FAILURE and reason

HAB_INV_ASSERTION, together with the call parameters. See the Event record

documentation for details.

For successful commands, no audit event is logged.

Return values:

• HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED, although

unsuccessful operations will still generate audit log events,

• HAB_SUCCESS on other ICs if the assertion is confirmed

• HAB_FAILURE otherwise

3.10 Report event

 hab_status_t(* hab_rvt::report_event)(hab_status_t status,

uint32_t index,

uint8_t *event,

size_t *bytes)

Report an event from the audit log.

Purpose:

This function allows the audit log to be interrogated. It is intended for use by post-ROM boot

stage components, via the ROM Vector Table , to determine the state of authentication

operations. This function may be called outside an hab_rvt.entry() / hab_rvt.exit() pair.

It is also available for use by the boot ROM, where it may be used to report boot failures as

part of a tethered boot protocol.

Operation:

This function performs the following operations:

• Scans the audit log for a matching event

• Copies the required details to the output parameters (if found)

Parameters:

[in] status Status level of required event

[in] index Index of required event at given status level

[in] event Event record

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 18

[in, out] bytes Size of event buffer on entry, size of event record on exit.

Remarks:

Use status = HAB_STS_ANY to match any logged event, regardless of the status value

logged.

Use index = 0 to return the first matching event, index = 1 to return the second matching

event, and so on.

The data logged with each event is context-dependent. Refer to Event record

documentation.

Warning:

Parameter bytes may not be NULL.

If the event buffer is a NULL pointer or too small to fit the event record, the required size is

written to bytes, but no part of the event record is copied to the output buffer.

Return values:

• HAB_SUCCESS if the required event is found, and the event record is copied to the

output buffer,

• HAB_SUCCESS if the required event is found and event buffer passed is a NULL,

pointer.

• HAB_FAILURE otherwise

3.11 Report status

 hab_status_t(* hab_rvt::report_status)(

hab_config_t*config,

hab_state_t *state)

Report security status.

Purpose:

This function reports the security configuration and state of the IC as well as searching the

audit log to determine the status of the boot process. It is intended for use by post-ROM boot

stage components, via the ROM Vector Table. This function may be called outside an

hab_rvt.entry() / hab_rvt.exit() pair.

Operation:

This function reads the fuses which indicate the security configuration. The fuse map varies

by IC and should be taken from the relevant NXP processor reference manual. It also uses the

Security Hardware state machine, if present and enabled, to report on the security state.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 19

Parameters:

[out] config Security configuration, NULL if not required

[out] state Security state, NULL if not required

Remarks:

If no Security Hardware state machine is present and enabled, the state

HAB_STATE_NONE will be output.

Return values:

• HAB_SUCCESS if no warning or failure audit events have been logged,

• HAB_WARNING otherwise, if only warning events have been logged.

• HAB_FAILURE otherwise

3.12 Failsafe mode

void(* hab_rvt::failsafe)(void)

Enter failsafe mode.

Purpose:

This function provides a safe path when image authentication has failed, and all possible boot

paths have been exhausted. It is intended for use by post-ROM boot stage components, via

the ROM Vector Table.

Operation:

The precise details of this function vary by IC and core and should be taken from the relevant

NXP processor Security Reference Manual.

Warning:

This function does not return.

Remarks:

Since this function does not return, it implicitly performs the functionality of hab_rvt.exit()

in order to ensure an appropriate configuration of the Security Hardware plugins. Two

typical implementations are:

• a low-level provisioning protocol in which an image is downloaded to RAM

from an external host, authenticated and launched. The downloaded image may

communicate with tools on the external host to report the reasons for boot failure

and may re-provision the end-product with authentic boot images.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 20

• a failsafe boot mode which does not allow execution to leave the ROM until the

IC is reset.

3.13 Exit

hab_status_t (* hab_rvt::exit)(void)

Finalize and exit HAB library.

Purpose:

This function finalizes the HAB library and Security Hardware plugins. It is intended for use

by post-ROM boot stage components, via the ROM Vector Table, after calling other HAB

functions and prior to launching the next boot stage or switching to another boot path.

Operation:

This function performs the following operations:

• Finalize the HAB library internal state

• Clear the internal secret key store

• Run the finalization sequence of each available Security Hardware plugin

If any failure occurs, an audit event is logged, and all remaining operations are abandoned

(except that all Security Hardware exit sequences are still executed).

Warning:

See warnings for hab_rvt.entry().

Postcondition:

Records are cleared from the audit log. Note that other event records are not cleared.

Any public keys installed by Command Sequence File commands remain active.

Any secret keys installed by Command Sequence File commands are deleted.

Available Security Hardware plugins are in their final state as described in the relevant

sections.

If a failure or warning occurs, an audit event is logged with the Engine tag of the Security

Hardware plugin concerned. The status and reason logged are described in the relevant

Security Hardware plugin documentation.

Return values:

• HAB_SUCCESS on an IC not configured as HAB_CFG_CLOSED, although

unsuccessful operations will still generate audit log events,

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 21

• HAB_WARNING on other ICs if all commands completed without failure (even if

warnings were generated),

• HAB_FAILURE otherwise

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 22

4 Data Structures

Detailed Description:

External data structures required or provided by HAB.

Purpose:

This section defines data structures used by HAB to guide image authentication and device

configuration operation, as well as information provided by HAB to assist in authenticating

boot sequence components after execution leaves the boot ROM.

Format:

All data structures other than C "structs" are interpreted as byte arrays. Data structure

diagrams in this document show the first byte (lowest address) in the top-left corner, with

subsequent bytes read across the rows from left to right, and then down the page to the final

byte (highest address) in the lower-right corner. Multi-byte byte fields such as addresses,

offsets and other integers are in big-endian format, regardless of the underlying processor

architecture.

There is no constrain imposed on alignment for the start or end of data structures, although

word alignment may improve processing speed.

Each HAB data structure starts with a Header in which the par bit field contains the HAB

version for which the data structure was constructed. Some structures contain fields of

variable length, or a variable number of fields, while others are fixed.

Parameters:

tag constant identifying data structure. Tags are unique across HAB and separated by at

least Hamming distance two.

len structure length in 8-bit bytes, including the Header and must be at least four.

V HAB_MAJOR_VERSION for this data structure

v HAB_MINOR_VERSION for this data structure

Note on the version field:

tag len v V

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 23

Any data structure where the version field (the combination of V and v) is less than the base

HAB library version results in the HAB API returning HAB_FAILURE and a corresponding

event being added to the audit log.

Note on address fields:

Several of the data structures here contain address, offset and size fields. On ICs with 32-bit

address spaces, each such field is represented as four bytes in big-endian order. On ICs with

different width address spaces, the minimum number of bytes to represent the address width

is used, again in big-endian order.

4.1 Image Vector Table

Details on the Image Vector Table can be found in the System Boot chapter of the relevant NXP

processor reference manual.

4.2 Device Configuration Data

Details on the Device Configuration Data can be found in the System Boot chapter of the

relevant NXP processor reference manual. DCD supports the Write Data, Check Data and NOP

commands.

4.3 Command Sequence File

Detailed Description:

Authentication and configuration script.

Purpose:

A Command Sequence File (CSF) is a script of commands used to guide image authentication

and device configuration operations. In a typical high-assurance boot, each image in the boot

sequence is accompanied by a CSF which is used by the preceding image to verify

authenticity before passing control.

Format:

A CSF consists of a Header followed by a sequence of one or more commands as shown

below.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 24

Parameters:

A CSF consists of a Header followed by a sequence of one or more commands as shown

below.

hdr Header with tag HAB_TAG_CSF, length and HAB version fields.

cmd CSF command.

Warning:

Every CSF must contain an Authenticate Data command to authenticate the CSF contents

using the CSF key.

The first CSF in the boot sequence must contain an Install Key command to install the CSF

key prior to CSF authentication.

The first CSF in the boot sequence must contain an Install Key command to install the

Super-Root Key Table prior to CSF key installation.

Any other commands encountered before those mentioned above will behave as mentioned

in the individual command descriptions.

Remarks:

Once installed, keys may be re-used by subsequent CSFs run by later boot sequence

components.

This section lists all HW-independent commands supported by HAB. Further HW-specific

commands, where supported, are described in the Security Hardware sections. The selection

of commands available on a given IC is described in the corresponding NXP processor

Reference Manual. At a minimum, the available commands always include:

o Check Data

o Set

o Install Key

o Authenticate Data

The maximum size of CSF supported is given in System boot chapter of the relevant NXP

processor reference manual.

hdr

[cmd]

[cmd]

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 25

4.3.1 Write Data

Detailed Description:

Write Data command (DCD).

Write a list of given 1, 2 or 4-byte values or bitmasks to a corresponding list of target

addresses. This command may be used in a Device Configuration Data structure, but in the

former, the set of allowed target addresses is restricted, as described in the System boot

chapter of the relevant NXP processor reference manual.

The command format is:

Parameters:

tag constant HAB_CMD_WRT_DAT

len constant

par command parameters - see below

address target address to which data should be written

val_msk data value or bitmask to be written to preceding address

See also:

Note on address fields.

The par parameter is divided into bit fields as follows:

tag len par

address

val_msk

[address]

[address]

[val_msk]

[val_msk]

7 6 5 4 3 2 1 0

bytes flags

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 26

Parameters:

bytes width of target locations, 1 (8 bit value), 2 (16 bit value), or 4 (32 bit value)

flags control flags for command behavior, a value from:

0x01 HAB_CMD_WRT_DAT_MSK: Mask/value flag – if set, only specific

bits may be overwritten at target address (otherwise all bits may be

overwritten).

0x02 HAB_CMD_WRT_DAT_SET: Write Data Set – Set/clear flag: if

HAB_CMD_WRT_DAT_MSK is set, bits at the target address

overwritten with this flag (otherwise it is ignored).

Remarks:

One or more target address and value/bitmask pairs can be specified. The same bytes

and flags parameters apply to all locations in the command.

When successful, this command writes to each target address in accordance with the

flags as follows:

“MSK” “SET” Action Interpretation

0 0 *address = val_msk Write value

0 1 *address = val_msk Write value

1 0 *address &= ~val_msk Clear bitmask

1 1 *address |= val_msk Set bitmask

Warning:

When used in a Device Configuration Data structure, if any of the target addresses does not

lie within an allowed region, none of the values is written. The allowed target regions are the

union of the allowed regions for hab_rvt.check_target(). Details on the allowable regions are

available in the System Boot chapter of the relevant NXP process or reference manual.

If any of the target addresses does not have the same alignment as the data width indicated in

the parameter field, none of the values is written.

If any of the values is larger or any of the bitmasks is wider than permitted by the data width

indicated in the parameter field, none of the values is written.

Postcondition:

On successful completion, values or bitmasks are written to target locations.

On unsuccessful completion, an audit event is logged giving the status as follows. For

successful commands, no audit event is logged:

o HAB_FAILURE, with further reasons:

o HAB_INV_COMMAND: command malformed.

o HAB_INV_ADDRESS: access denied for target address.

o HAB_INV_ADDRESS: misaligned target address.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 27

o HAB_INV_SIZE: value larger than data width.

o HAB_INV_SIZE: unsupported data width.

4.3.2 Check Data

Detailed Description:

Check Data command (DCD and CSF).

Test for a given 1, 2 or 4-byte bitmask from a source address. This command may be used

in either a Device Configuration Data structure or a Command Sequence File.

The command format is:

Parameters:

tag constant HAB_CMD_CHK_DAT

len constant

par command parameters - see below

address source address to test

mask bitmask to test

count optional poll count

See also:

Note on address fields.

The par parameter is divided into bit fields as follows:

Parameters:

bytes width of target locations, 1 (8-bit value), 2 (16-bit value), or 4 (32-bit value)

flags control flags for command behavior, a value from:

tag len par

address

mask

[count]

7 6 5 4 3 2 1 0

bytes flags

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 28

0x02 HAB_CMD_CHK_DAT_SET: Set/clear flag – bits set in mask must

match this flag.

0x04 HAB_CMD_CHK_DAT_ANY: Any/all flag – if clear, all bits set in mask

must match (otherwise any bit suffices).

Remarks:

This command polls the source address until either the exit condition is satisfied, or

the poll count is reached. The exit condition is determined by the flags as follows:

“ANY” “SET” Exit condition Interpretation

0 0 (*address & mask) == 0 All bits clear

0 1 (*address & mask) == mask All bits set

1 0 (*address & mask) != mask Any bit clear

1 1 (*address & mask) != 0 Any bit set

This command can be used in either a Device Configuration Data structure or a Command

Sequence File structure prior to or after Command Sequence File authentication without any

difference.

If count is not specified this command will poll indefinitely until the exit condition is met. If

count = 0, this command behaves as for NOP.

Warning:

If the source address does not have the same alignment as the data width indicated

in the parameter field, the value is not read.

If the bitmask is wider than permitted by the data width indicated in the parameter

field, the value is not read.

Postcondition:

On unsuccessful completion, an audit event is logged giving the status as follows.

For successful commands, no audit event is logged:

o HAB_FAILURE, with further reasons:

o HAB_INV_COMMAND: command malformed.

o HAB_INV_ADDRESS: misaligned source address.

o HAB_INV_SIZE: bitmask wider than data width.

o HAB_INV_SIZE: unsupported data width.

o HAB_OVR_COUNT: poll count reached before exit condition met.

4.3.3 NOP

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 29

Detailed Description:

This command has no effect (DCD and CSF).

The command format is:

Parameters:

tag constant HAB_CMD_NOP

len constant (four)

und undefined (ignored)

Remarks:
This command can be used in a Command Sequence File structure prior to or after the

Command Sequence File authentication without any difference.

4.3.4 Set

Detailed Description:

Set command (CSF only).

Set the value of variable configuration items.

The command format is:

Parameters:

tag constant HAB_CMD_SET

len constant

itm command parameters – see definitions for hab_var_cfg_itm_t

value value to be used for itm

Remarks:
This command can be used in a Command Sequence File structure prior to or after the

Command Sequence File authentication without any difference.

tag len und

tag len itm

value

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 30

Warning:

Only one value is active at a time for each itm. Each Set command replaces the active value

for that itm, with subsequent operations using the new value. The active value persists

across subsequent calls to HAB functions, including subsequent hab_rvt.exit() and

hab_rvt.entry() calls.

Postcondition:

On successful completion, the active value for the variable configuration item is

replaced by the new value. No audit event is logged.

On unsuccessful completion, the active value is not changed, and an audit event is

logged giving the status as follows:

o HAB_FAILURE, with further reasons:
o HAB_INV_COMMAND: command malformed.
o HAB_UNS_ITM: unsupported configuration item.
o HAB_UNS_ALGORITHM: unsupported algorithm specified.

Set default engine:

Whenever an algorithm computation is required, the algorithm tag and parameters are used

to search for an engine capable of performing the computation. This default behavior may be

overridden in two ways, in decreasing order of precedence:

o specifying an engine other than HAB_ENG_ANY in a CSF command such as

Authenticate Data. This has highest priority, but the choice applies only to the

individual CSF command: the default behavior resumes once the command is

completed. The range of algorithms for which engines may be specified is also

limited by the parameters available in the command.

o specifying an engine other than HAB_ENG_ANY in a Set command. This overrides

the default behavior, and applies to all subsequent operations, including later boot

phases, until modified by another Set command.

A Set command specifying HAB_ENG_ANY restores the default behavior.

The format for the value field in the Set command is:

Parameters:
alg Algorithm identifier
eng Engine identifier
cfg engine configuration flags (if applicable)

Definitions:

/* Variable configuration items */

typedef enum hab_var_cfg_itm {

0x0 alg cfg eng

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 31

 /* Preferred engine for a given algorithm */

 HAB_VAR_CFG_ITM_ENG = 0x03

} hab_var_cfg_itm_t;

4.3.5 Initialize

Detailed Description:

Initialize specified engine features when exiting ROM (CSF only).

The command format is:

Parameters:

tag constant HAB_CMD_INIT

len variable, depending on eng

eng Engine to be initialized

val [optional] initialization values required by eng

Remarks:

Engine-specific values and initialization sequences are described in the relevant Security

Hardware section.

Initialize commands are cumulative. A feature will be initialized if specified in one or more

Initialize commands.

Warning:

This command may not be used in a Device Configuration Data structure if the IC is

configured as HAB_CFG_CLOSED.

Postcondition:

On successful completion, the features specified for Engine will be initialized when

hab_rvt.exit() is called.

On unsuccessful completion, the initialization sequences will be omitted unless specified in

a separate, successful Initialize command. An audit event is logged giving the status as

follows. For successful commands, no audit event is logged.

tag len eng

[val]

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 32

o HAB_FAILURE, with further reasons:

o HAB_INV_COMMAND: command used outside of authenticated CSF when

disallowed by IC security configuration.

4.3.6 Unlock

Detailed Description:

Prevent specific engine features being locked when exiting ROM (CSF Only).

The command format is:

Parameters:

tag constant HAB_CMD_UNLK

len variable, depending on eng

eng Engine to be left unlocked

val [optional] unlocks values required by eng

Remarks:

Engine-specific values and locks are described in the relevant Security Hardware section.

Unlock commands are cumulative. A feature will be left unlocked if specified in one or

more Unlock commands.

Warning:

This command may not be used in a Device Configuration Data structure if the IC is

configured as HAB_CFG_CLOSED.

Postcondition:

On successful completion, the features specified for Engine will not be locked when

hab_rvt.exit() is called.

tag len eng

[val]

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 33

On unsuccessful completion, the features specified will be locked unless specified in a

separate, successful Unlock command. An audit event is logged giving the status as follows.

For successful commands, no audit event is logged.

o HAB_FAILURE, with further reasons:

o HAB_INV_COMMAND: command used outside of authenticated CSF when

disallowed by IC security configuration.

4.3.7 Install Key

Detailed Description:

Install Key command (CSF only).

Authenticate and install a public key or secret key for use in subsequent Install Key or

Authenticate Data commands.

Public key authentication can be restricted to a specific key by including a hash of the key's

certificate in the command parameters or extended to include any key certified by the

verifying key.

Secret key installation involves unwrapping with a key encryption key (KEK) using a

supported key wrap protocol, with authentication integral to that protocol.

Other key usages are set in this command and apply to subsequent operations using the

installed key.

HAB uses three internal key stores for key data, each with its own zero-based array of key

slots:

o the public key store for public keys installed by this command

o the secret key store for secret keys installed by this command

o the Master KEK store for Master KEKs pre-installed on the IC

The user is responsible for managing the key slots in the internal key stores to establish the

desired public or secret key hierarchy and determine the keys used in authentication

operations. Overwriting occupied key slots is not allowed, although a repeat command to re-

install the same public key occupying the target slot will be skipped and not generate an

error.

The command format is:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 34

Parameters:

tag constant HAB_CMD_INS_KEY

len variable, depending on size of crt_hsh (if present)

flg flags from hab_cmd_ins_key_flg

pcl key authentication Protocol

alg hash Algorithm.

src source key (verification key, KEK) index.

tgt target key index.

key_dat start address of key data to install. Absolute if HAB_CMD_INS_KEY_ABS is

set in flg parameter, relative to CSF start otherwise

crt_hsh [optional] hash of the Certificate structure indicated by key_dat

See also:

Note on address fields regarding the key_dat parameter.

Remarks:

For Super-Root Key installation,

o pcl is HAB_PCL_SRK,

o alg is used in the SRK Authentication Protocol,

o src is the source key index within the Super-Root Key Table (with 0 denoting the

first key in the table),

o tgt is the public key store index for installation, and

o key_dat locates the Super-Root Key Table data.

For other public key installation,

o pcl is the Certificate format,

o alg is the algorithm used to compute crt_hsh,

o src is the public key store index of the verification key,

o tgt is the public key store index for installation,

o key_dat locates the Certificate data, and

o the signature algorithm is determined from the verification key src.

For secret key installation from a Secret Key Blob,

pcl alg src tgt

tag

key_dat

par len

[crt_hsh]

[crt_hsh]

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 35

o pcl is HAB_PCL_BLOB,

o src is the KEK index within the Master KEK store,

o tgt is the secret key store index for installation,

o key_dat locates the Secret Key Blob data,

o the key wrap algorithm is determined by the on-chip Security Hardware, and

o src and tgt indices may match without overwriting an existing key because they

refer to different key stores.

For other secret key installation,

o pcl is the Wrapped Key format,

o src is the KEK index within the secret key store,

o tgt is the secret key store index for installation,

o key_dat locates the Wrapped Key data, and

o the key wrap algorithm is determined from the KEK src.

Warning:

The following constraints apply to the command parameters.

For public key installation, if tgt is HAB_IDX_SRK, then

o pcl must be HAB_PCL_SRK,

o only HAB_CMD_INS_KEY_ABS may be set in flg, and

o crt_hsh must be absent.

Otherwise, if tgt is HAB_IDX_CSFK, then

o pcl must not be HAB_PCL_SRK,

o alg must be HAB_ALG_ANY

o src must be HAB_IDX_SRK,

o HAB_CMD_INS_KEY_CSF must be set in flg,

o HAB_CMD_INS_KEY_HSH must not be set in flg, and

o crt_hsh must be absent.

Otherwise,

o pcl must not be HAB_PCL_SRK, and

o tgt must not be HAB_IDX_SRK or HAB_IDX_CSFK.

Finally, if HAB_CMD_INS_KEY_HSH is not set in flg,

o alg must be HAB_ALG_ANY, and

o crt_hsh must be absent.

For secret key installation,

o alg must be HAB_ALG_ANY,

o only HAB_CMD_INS_KEY_ABS may be set in flg, and

o crt_hsh must be absent.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 36

The crt_hsh parameter (if used) is calculated across the whole of the HAB Certificate

structure, including Header. If there is a mismatch, the key installation is aborted.

For SRK installation, the valid values of src are limited by the number of keys present in the

Super-Root Key Table. Further IC-specific constraints may apply when multiple cores on a

single IC share a Super-Root Key Table, or when an IC implements SRK revocation fuses:

details should be taken from the relevant NXP processor reference manual.

For secret key installation with pcl set to HAB_PCL_BLOB, the valid values of src are

limited to the Master KEKs available on the IC. The relevant Security Hardware description

describes the available Master KEK indices.

Postcondition:

On successful completion, key indicated by key_dat parameter is installed at tgt index in the

appropriate HAB internal key store, along with usage data extracted from flg parameter, and

the verification protocol or decryption protocol for use with installed key, extracted from

the key_dat parameter.

On unsuccessful completion, an audit event is logged giving the status as follows. For

successful commands, no audit event is logged.

• HAB_WARNING: key installed, but command did not complete as expected, with

further reasons:

o HAB_UNS_ENGINE: default engine (from Set command) is either not

recognized or does not support specified algorithm or parameters.

Alternative engine used.

o HAB_ENG_FAIL: failure to release default engine (from Set command).

• HAB_FAILURE otherwise, with further reasons:

o HAB_INV_COMMAND: command malformed.

o HAB_INV_COMMAND: Attempt to Install SRK or CSF Key after CSF

authentication.

o HAB_INV_COMMAND: Attempt to Install Keys other than SRK or CSF

Key prior to CSF authentication.

o HAB_INV_KEY: source key in Super-Root Key Table is of type

HAB_KEY_HASH.

o HAB_INV_INDEX: no verification key at given index.

o HAB_INV_INDEX: no KEK at given index.

o HAB_INV_INDEX: no source key at given index in Super-Root Key

Table.

o HAB_INV_INDEX: source key unavailable at given index in Super-Root

Key Table.

o HAB_INV_INDEX: target index for installed key unavailable.

o HAB_UNS_KEY: unsupported public key type or domain parameters (e.g.

field size).

o HAB_UNS_KEY: unsupported secret key type or domain parameters (e.g.

key size).

o HAB_UNS_PROTOCOL: unsupported or unsuitable certificate protocol.

o HAB_UNS_PROTOCOL: unsupported or unsuitable key wrap protocol.

o HAB_UNS_ALGORITHM: unsupported or unsuitable hash algorithm.

o HAB_ENG_FAIL: failure to allocate default engine (from Set command).

o HAB_INV_SIGNATURE: certificate signature verification failed.

o HAB_INV_SIGNATURE: key unwrap authentication failed.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 37

o HAB_INV_CERTIFICATE: other certificate or Super-Root Key Table

verification failed (including mismatch with crt_hsh).

Definitions:

/* Public Key types */

#define HAB_KEY_PUBLIC 0xe1 /**< Public key type: data present */

#define HAB_KEY_HASH 0xee /**< Any key type: hash only */

/* Public key store indices */

#define HAB_IDX_SRK0 0 /**< Super-Root Key, set 0 index */

#define HAB_IDX_CSFK0 1 /**< CSF key 0 index */

#define HAB_IDX_SRK1 5 /**< Super-Root Key, set 1 index */

#define HAB_IDX_CSFK1 6 /**< CSF key 1 index */

/* Flags for Install Key commands. */

typedef enum hab_cmd_ins_key_flg

{

 HAB_CMD_INS_KEY_CLR = 0, /**< No flags set */

 HAB_CMD_INS_KEY_ABS = 1, /**< Absolute certificate address */

 HAB_CMD_INS_KEY_CSF = 2, /**< Install CSF key */

 HAB_CMD_INS_KEY_DAT = 4, /**< Key binds to Data Type */

 HAB_CMD_INS_KEY_CFG = 8, /**< Key binds to Configuration */

 HAB_CMD_INS_KEY_FID = 16, /**< Key binds to Fabrication UID */

 HAB_CMD_INS_KEY_MID = 32, /**< Key binds to Manufacturing ID */

 HAB_CMD_INS_KEY_CID = 64, /**< Key binds to Caller ID */

 HAB_CMD_INS_KEY_HSH = 128 /**< Certificate hash present */

} hab_cmd_ins_key_flg_t;

4.3.7.1 Wrapped Key

Detailed Description:

Wrapped secret key data for installation.

Supported in HAB version 4.1 and later with the appropriate protocol(s).

Purpose:

A HAB Wrapped Key structure specifies a secret key to be installed, along with the data

required to verify the key's authenticity. Wrapped secret keys include the key value in

encrypted form. Wrapped keys are attached to or referenced by a Command Sequence File

and installed using Install Key commands.

Format:

A HAB Wrapped Key structure consists of a generic Header followed by protocol-specific

data containing the key and authentication data. The wrapped key protocol is determined by

a parameter within the Install Key command. Note that the protocol-specific data may have

an arbitrary length in bytes.

The storage format is:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 38

Parameters:

hdr Header with tag HAB_TAG_WRP, length and HAB version fields.

wrp_dat Protocol-specific wrapped key and authentication data.

Remarks:

This section lists all wrapped key formats or protocols supported by HAB. The selection of

formats available on a given IC is described in the corresponding NXP Processor Reference

Manual.

4.3.7.2 Secret Key Blob

Purpose:

HAB secret key blobs are used to install secret keys using the special HAB_PCL_BLOB

protocol in an Install Key command. This protocol is specific to the available Security

Hardware and always uses a Master KEK (which is usually unique to an IC).

Format:

HAB secret key blobs are stored using the HAB Wrapped Key data structure. The storage

format for the wrp_dat section is:

Parameters:

mode key cipher mode

alg key cipher algorithm

siz unwrapped key value size in bytes

flg key flags from the hab_key_secret_flg

hdr

wrp_dat

mode alg flg

data

size

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 39

data encrypted key value

Remarks:

In the wrp_dat section, the unencrypted parameters are authenticated as part of the wrapping

protocol.

Details of the wrapping protocol, including authentication mechanism and storage format for

the encrypted key value are available in the relevant Security Hardware engine

documentation.

Definitions:

/* Secret key flags. */

typedef enum hab_key_secret_flg

{

 /* Seven more flag values available */

 HAB_KEY_FLG_KEK = 128 /**< KEK */

} hab_key_secret_flg_t;

4.3.8 Authenticate Data

Detailed Description:

Authenticate Data command (CSF only).

Verify the authenticity of pre-loaded data using a pre-installed key. The data may include

executable SW instructions and may be spread across multiple non-contiguous blocks in

memory.

The authentication protocol may be based on either public keys using a digital signature or

secret keys using a message authentication code. Secret key authentication protocols may

include in-place decryption of the pre-loaded data.

The command format is:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 40

Parameters:

tag constant HAB_CMD_AUT_DAT

len variable, depending on number of blocks

flg flags from the set hab_cmd_aut_dat_flg

key verification key index

pcl authentication protocol.

eng Engine used to process data blocks. Use HAB_ENG_ANY to allow the protocol

implementation to choose the first compatible engine.

cfg Engine configuration flags (if applicable)

aut_start address of authentication data. Absolute if HAB_CMD_AUT_DAT_ABS is set

in flg parameter, relative to CSF start otherwise

blk_start Absolute address of a data block to be authenticated.

blk_bytes Size in bytes of a data block to be authenticated.

See also:

Note on address fields regarding the key_dat parameter.

Remarks:

When more than one data block is indicated, authentication is done on the contents

of those data blocks as if they were concatenated in the order given.

For public key authentication protocols,

• key is an index within the public key store

• pcl is the Signature format

• eng is a hash Engine

• aut_start locates the Signature data

• the signature algorithm is determined from key

tag len flg

aut_start

[blk_start]

[blk_start]

[blk_bytes]

[blk_bytes]

key pcl cfg eng

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 41

• the hash algorithm is determined from the Signature data.

• if key is HAB_IDX_CSFK, the current CSF is authenticated. This is the only

CSF authentication recognized by HAB. For example, including the CSF

within a region authenticated by another key will not be recognized as

authenticating the CSF.

For secret key authentication protocols,

• key is an index within the secret key store

• pcl is the Message Authentication Code format

• eng is a MAC Engine

• aut_start locates the Message Authentication Code data

• the MAC algorithm is determined from the key

In addition, for secret key authentication protocols with decryption,

• eng is a cipher and MAC Engine

• the cipher and MAC algorithms are determined from the key

• encrypted data is over-written in-place with decrypted data as the decryption

proceeds

Warning:

If eng is HAB_ENG_ANY, cfg must be zero.

For public key authentication protocols,

• if key is HAB_IDX_CSFK, all blk_start and blk_bytes parameters must be absent.

Postcondition:

This command may alter the configuration of an Engine used in authentication. See the

Security Hardware section for the engine in question.

On completion of a secret key authentication protocol using counter mode, the data

encryption key at index key is uninstalled from the secret key store. This is a precaution

against using the same key and nonce combination.

On failure of a secret key authentication and decryption protocol, the decrypted data regions

are over-written with zero bytes.

On completion (for any protocol), an audit event is logged giving the status as follows.

• HAB_SUCCESS: data authenticated as specified. Data blocks are logged (except

for CSF authentication, where no audit event is logged)

• HAB_WARNING: data authenticated, but command did not complete as specified,

with further reasons:

o HAB_UNS_ENGINE: specified engine is either not recognized or does not

support specified algorithm or parameters. Alternative engine used.

o HAB_ENG_FAIL: failure to release specified engine.

• HAB_FAILURE otherwise, with further reasons:

o HAB_INV_COMMAND: command malformed.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 42

o HAB_INV_COMMAND: Attempt to authenticate Image Data prior to CSF

Authentication.

o HAB_INV_COMMAND: Attempt to re-authenticate CSF Data after CSF

Authentication.

o HAB_INV_COMMAND: Attempt to authenticate Image Data with either

HAB_IDX_SRK, HAB_IDX_CSFK.

o HAB_INV_COMMAND: Attempt to authenticate CSF Data with a key

other than HAB_IDX_CSFK.

o HAB_INV_INDEX: no key available at given index or index out of range.

o HAB_INV_KEY: specified key is identified as a CA key.

o HAB_UNS_KEY: no engine available for specified key parameters.

o HAB_UNS_PROTOCOL: unsupported protocol.

o HAB_UNS_ALGORITHM: unsupported or unsuitable algorithm.

o HAB_ENG_FAIL: failure to allocate specified engine.

o HAB_INV_SIGNATURE: data authentication failed. Covers both

Signature and Message Authentication Code failure.

Postcondition:

/* Flags for Authenticate Data commands. */

typedef enum hab_cmd_aut_dat_flg

{

 HAB_CMD_AUT_DAT_CLR = 0, /**< No flags set */

 HAB_CMD_AUT_DAT_ABS = 1 /**< Absolute signature address */

} hab_cmd_aut_dat_flg_t;

4.4 Events

Detailed Description:

Audit log event record.

Purpose:

A HAB event record contains data from an event in the audit log. It is generated as an output

from the Report event API.

Format:

An Event record consists of a Header followed by a list of parameters as described below.

hdr

sts rsn ctx eng

[data]

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 43

Parameters:

hdr Header with tag HAB_TAG_EVT, length and HAB version fields

sts Status level logged.

rsn Further reason logged

ctx Context from which the event is logged

eng Engine associated with the failure, or HAB_ENG_ANY if none

data Context-dependent data

Remarks:

The length of the data field may be calculated from the overall length of the record.

Context-dependent data:

In most contexts, the data field is absent. The exceptions are as follows:

• HAB_CTX_AUT_DAT: authenticated data event used internally by HAB. The data

field specifies an authenticated data block in an internally-defined format.

• HAB_CTX_ENTRY, HAB_CTX_EXIT: unless specifically mentioned in the

relevant Security Hardware section, the data field is empty.

• HAB_CTX_TARGET: the data field consists of the hab_rvt.check_target() call

parameters in the order they appear in the parameter list.

• HAB_CTX_COMMAND: the data field consists of the entire command which

failed, copied from the Device Configuration Data or Command Sequence File.

• HAB_CTX_ASSERT: the data field consists of the hab_rvt.assert() call parameters

in the order they appear in the parameter list.

4.5 ROM Vector Table

Detailed Description:

HAB library hooks.

Purpose:

The ROM vector table (RVT) provides function pointers into the HAB library in ROM for

use by post-ROM boot sequence components.

Format:

The ROM Vector Table consists of a Header followed by a list of addresses as described

further below. For details on the location of the please refer to the System Boot chapter of

the relevant NXP processor reference manual.

Data Fields:

hab_hdr_t hdr

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 44

Header with tag HAB_TAG_RVT, length and HAB version fields (see Data

Structures)

hab_status_t(* entry)(void)

Enter and initialize HAB library.

hab_status_t(* exit)(void)

Finalize and exit HAB library.

hab_status_t(* check_target)(hab_target_t type, const void *start, size_t bytes)

Check target address.

hab_image_entry_f(* authenticate_image)(uint8_t cid, ptrdiff_t ivt_offset, void **start,

size_t *bytes, hab_loader_callback_f loader)

Authenticate image.

hab_status_t(* run_dcd)(const uint8_t *dcd)

Execute a boot configuration script.

hab_status_t(* run_csf)(const uint8_t *csf, uint8_t cid)

Execute an authentication script.

hab_status_t(* assert)(hab_assertion_t type, const void *data, uint32_t count)

Test an assertion against the audit log.

hab_status_t(* report_event)(hab_status_t status, uint32_t index, uint8_t *event, size_t

*bytes)

Report an event from the audit log.

hab_status_t(* report_status)(hab_config_t *config, hab_state_t *state)

Report security status.

void(* failsafe)(void)

Enter failsafe boot mode. The ROM Vector Table consists of a Header followed by a

list of addresses as described further below.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 45

hab_image_entry_f(* authenticate_image_no_dcd)(uint8_t cid, ptrdiff_t ivt_offset, void

**start, size_t *bytes, hab_loader_callback_f loader)

Authenticate image.

uint32_t(* get_version)(void)

Get HAB version.

hab_status_f(* authenticate_container)(uint8_t cid, ptrdiff_t ivt_offset, void **start, size_t

*bytes, hab_loader_callback_f loader, uint32_t srkmask, int skip_dcd)

Authenticate container.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 46

5 Security Hardware

This section describes all versions of all Security Hardware blocks supported by HAB. For details

on the security hardware available please refer to the Security Reference Manual for the relevant

NXP processor.

5.1 Security Controller (SCC)

Purpose:

The SCC provides secure RAM storage as well as monitoring the security state of

the IC. HAB supports SCCv2

Entry Sequence:

During entry, the SCC status registers are examined for any errors.

Self-test:

During the initial call to hab_rvt.entry() in ROM, SCC performs a known-answer test. If the

known-answer test fails, a failure event is logged to the audit log. Subsequent invocations of

hab_rvt.entry() do not repeat the self-tests.

Exit sequence:

During exit, the SCC status registers are examined for any errors.

Events:

If an entry, exit or test operation fails, an audit event is logged with status field

HAB_FAILURE, reason field HAB_ENG_FAIL, engine field HAB_ENG_SCC and data

field containing the following registers (in order):

• Command Status

• Error Status

• Security Monitor Status

• Security Violation Detector

Note: If a failure occurs when the SCC is not enabled then the audit event reason field is

HAB_WARNING rather than HAB_FAILURE.

Security state mapping:

SCCv2 does not support all of the states in HAB4. The specific mapping is shown in the

table below:

HAB State SCCv2 state

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 47

HAB_STATE_INITIAL Initialize

HAB_STATE_CHECK Health Check

HAB_STATE_NONSECURE Non-Secure

HAB_STATE_TRUSTED Secure

HAB_STATE_ SECURE -UNSUPPORTED-

HAB_STATE_FAIL_SOFT Fail Soft

HAB_STATE_FAIL_HAR Fail Hard

SW may also be selected automatically by HAB if the eng parameter is HAB_ENG_ANY

and the hash computation is compatible with the SW engine's constraints.

5.2 Data Co-Processor (DCP)

Purpose:

DCP is used by HAB to accelerate hash computations. HAB supports DCPv2,

depending on the IC configuration.

Entry Sequence:

Apart from the self-test, no externally-visible operations occur for this engine.

Self test:

During the initial call to hab_rvt.entry() in ROM, DCP performs a number of known-answer

tests. If any known-answer test fails, DCP is marked as inoperative, and operations are

directed to other engines where available. Subsequent invocations of hab_rvt.entry() do not

repeat the self-tests.

Exit sequence:

No externally-visible operations occur for this engine.

Events:

If an entry, exit or test operation fails, an audit event is logged with status field

HAB_WARNING, reason field HAB_ENG_FAIL, engine field HAB_ENG_DCP and data

field containing the following registers (in order):

• Status

• Channel Status

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 48

Algorithms – hash:

DCP supports SHA-1 and SHA-256 hash algorithms.

DCP may be used for hash computation in commands such as Authenticate Data by using a

HAB_ENG_DCP eng parameter providing the following constraints are met:

• DCP is enabled

• the alg parameter is HAB_ALG_SHA1 or HAB_ALG_SHA256 and supported on

this IC

• at most HAB_DCP_BLOCK_MAX data blocks are covered by the hash (see

Authenticate Data)

• except the final one, all data blocks are multiples of 64 bytes in length (the final

data block may be an arbitrary length)

• the combined length of all data blocks is less than 512 MB

• all data blocks reside in memory accessible to DCP's DMA engine

Use of HAB_ENG_DCP without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

DCP may also be selected automatically by HAB if the eng parameter is HAB_ENG_ANY

and the hash computation is compatible with DCP's constraints.

Configuration:

DCP may be configured for optimal performance and various memory types by means of

appropriate Write Data commands in the Device Configuration Data.

DCP may be selected as the default hash engine for a specific algorithm using the Set

command. A default configuration is established in the same command.

5.3 Run-Time Integrity Checker (RTIC)

Purpose:

RTIC is used to accelerate hash algorithm calculations and can be configured to

retain computed hashes for later use in run-time monitoring. HAB supports

RTICv3, depending on the IC configuration.

Entry Sequence:

Apart from the self-test, no externally-visible operations occur for this engine.

Self-test:

During the initial call to hab_rvt.entry() in ROM, RTIC performs a known-answer test. If

the known-answer test fails, RTIC is marked as inoperative, and hash operations are

directed to other engines where available. Subsequent invocations of hab_rvt.entry() do not

repeat the self-tests.

Exit sequence:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 49

No externally-visible operations occur for this engine.

Events:

If an entry, exit or test operation fails, an audit event is logged with status field

HAB_WARNING, reason field HAB_ENG_FAIL, engine field HAB_ENG_RTIC and

data field containing the following registers (in order):

• Status

• Control

• Fault Address

Use of HAB_ENG_RTIC without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

RTIC may also be selected automatically by HAB if the eng parameter is HAB_ENG_ANY

and the hash computation is compatible with RTIC's constraints.

Configuration:

RTIC may be configured for optimal performance and various memory types by means of

appropriate Write Data commands in the Device Configuration Data.

RTIC may be selected as the default hash engine for a specific algorithm using the Set

command. A default configuration is established in the same command.

Retaining computed hash values:

RTIC supports storing several independent reference hash values which may be monitored

at run-time. HAB provides a means to compute and retain the reference hash values in

preparation for later run-time monitoring.

If HAB_RTIC_KEEP is set when using HAB_ENG_RTIC, the computed hash value is

retained in RTIC's reference hash register, the corresponding run-time enable bit is set, and

the corresponding run-time unlock bit is cleared. A subsequent hash calculation using RTIC

will use the next available reference hash register.

If HAB_RTIC_KEEP is not set, a subsequent hash calculation using RTIC will overwrite

the current reference hash register.

Use of HAB_ENG_RTIC (with or without HAB_RTIC_KEEP) once all the reference hash

registers are exhausted will result in an unsuccessful operation with an

HAB_UNS_ALGORITHM audit event being logged. This is especially important to note

for multiple core ICs with a shared RTIC since the available reference hashes must be

shared between the cores. HAB uses the run-time enable bits in the RTIC control register to

ensure that reference hashes retained by another core are not overwritten.

5.4 Symmetric, Asymmetric, Hash and Random
Accelerator (SAHARA)

Purpose:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 50

SAHARA is used by HAB to accelerate hash computations. HAB supports

SAHARAv4LT, depending on the IC configuration.

Entry Sequence:

Apart from the self-test, no externally-visible operations occur for this engine.

Self-test:

During the initial call to hab_rvt.entry() in ROM, SAHARA performs a number of known-

answer tests. If any known-answer test fails, SAHARA is marked as inoperative, and

operations are directed to other engines where available. Subsequent invocations of

hab_rvt.entry() do not repeat the self-tests.

Exit sequence:

No externally-visible operations occur for this engine.

Events:

If an entry, exit or test operation fails, an audit event is logged with status field

HAB_WARNING, reason field HAB_ENG_FAIL, engine field HAB_ENG_SAHARA and

data field containing the following registers (in order):

• Control

• Status

• Error Status

• Fault Address

• Current Descriptor Address

• Initial Descriptor Address

• Operation Status

• Configuration

• Multiple Master Status

Algorithms – hash:

Although SAHARA supports MD5, SHA-1 and SHA-256 hash algorithms, MD5 and SHA-

1 are deprecated in HAB, so SAHARA may be used only for SHA-256.

SAHARA may be used for hash computation in commands such as Authenticate Data by

using a HAB_ENG_SAHARA eng parameter providing the following constraints are met:

• SAHARA is enabled

• the alg parameter is HAB_ALG_SHA256

• at most HAB_SAHARA_BLOCK_MAX data blocks are covered by the hash (see

Authenticate Data)

• all data blocks reside in memory accessible to SAHARA's DMA engine

Use of HAB_ENG_SAHARA without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 51

SAHARA may also be selected automatically by HAB if the eng parameter is

HAB_ENG_ANY and the hash computation is compatible with SAHARA's constraints.

DCP supports SHA-1 and SHA-256 hash algorithms.

Configuration:

SAHARA may be configured for optimal performance and various memory types by means

of appropriate Write Data commands.

SAHARA may be selected as the default engine for a specific algorithm using the Set

command. A default configuration is established in the same command.

5.5 Secure Real Time Clock (SRTC)

Purpose:

SRTC state is controlled by HAB during the boot flow. HAB supports SRTC version

1.

Entry Sequence:

No externally-visible operations occur for this engine.

Self-test:

No self-tests occur for this engine.

Commands:

When used with HAB_ENG_SRTC:

• The Initialize command prepares to clear any failure status flags and zero the low-

power counters and timers if the SRTC is in Init state when hab_rvt.exit() is first

called on leaving the ROM. The optional val parameter is absent.

• The Unlock command prepares to prevent the secure timer and monotonic counter

being locked if the SRTC is in Valid state when hab_rvt.exit() is first called on

leaving the ROM. The optional val parameter is absent.

Exit sequence:

During the initial call to hab_rvt.exit() in ROM, the SRTC state is updated in accordance

with its configuration and state, the IC boot and security configurations, and any SRTC-

specific CSF commands.

If the SRTC is not configured for low security but the boot configuration is non-secure:

• this is an unsupported configuration

• SRTC is forced into the Failure state

Otherwise, if SRTC is configured for high security, the behavior depends on the SRTC state

and whether SRTC-related CSF commands have been executed:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 52

• if the SRTC is in Init state,

o the power glitch register is initialized

o the SRTC is moved out of Init state

▪ if an Initialize command has been executed since calling

hab_rvt.entry(), the SRTC should move to the Non-Valid state with

secure timer and monotonic counter cleared

▪ otherwise, the SRTC could move to either Non-Valid or Failure

state, depending on the status register contents

o the secure timer and monotonic counters are not locked

• if the SRTC is in Valid state,

o unless an Unlock command has been executed since calling hab_rvt.entry(),

the secure timer and monotonic counters are locked

• otherwise, no changes are made to the SRTC settings

During subsequent calls to hab_rvt.exit(), no externally visible operations occur for this

engine.

Events:

If an exit operation fails, an audit event is logged with engine field HAB_ENG_SRTC and

data field containing the following registers (in order):

o LP Control

o LP Status

o HP Control

o HP Interrupt Status

The event status is as follows.

o HAB_WARNING, with further reasons:

o HAB_UNS_STATE: Initialize used with SRTC not in Init state

o HAB_UNS_STATE: Unlock used with SRTC not in Valid state

o HAB_FAILURE, with further reasons:

o HAB_ENG_FAIL: SRTC could not be allocated

5.6 Cryptographic Accelerator and Assurance
Module (CAAM)

Purpose:

CAAM is used by HAB to accelerate hash computations. HAB supports CAAMv1,

depending on the IC configuration

Entry Sequence:

During calls to hab_rvt.entry(), the following operations are performed:

o self-tests are run if this is the initial entry (see below),

o the status register is examined to verify that CAAM is idle and not busy,

o the secure memory status register is examined for errors, and

o a secure memory partition is allocated with a single page for the secret key store

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 53

Self-test:

During the initial call to hab_rvt.entry() in ROM, CAAM performs a number of known-

answer tests:

o hash example

o AEAD example

o key unwrap example with known test key

o SHA-256 hash DRBG example

If any known-answer test fails, the relevant functionality in CAAM is marked as

inoperative, and operations are directed to other engines where available. Subsequent

invocations of hab_rvt.entry() do not repeat the self-tests.

Commands:

When used with HAB_ENG_CAAM, the Unlock command prevents specific locks being

applied and the Init command enforces specific initializations when hab_rvt.exit() is first

called on leaving the ROM. The val command parameter is of the form

where flg specifies the features to leave unlocked or to initialize by using the values

HAB_CAAM_UNLOCK_MID or HAB_CAAM_INIT_RNG.

Exit sequence:

During the initial call to hab_rvt.exit() in ROM, CAAM is updated in accordance with the

IC boot and security configurations, and any CAAM Unlock commands as follows

o if the IC is configured as HAB_CFG_CLOSED, unless an Unlock command with

HAB_CAAM_UNLOCK_MID flagged has been executed,

o Job Ring and DECO master ID registers are locked

o if the IC is configured as HAB_CFG_CLOSED, if an Init command with

HAB_CAAM_INIT_RNG flagged has been executed,

o TRNG status is checked for errors in entropy generation

o DRNG state handle 0 is instantiated (without prediction resistance) using

entropy from TRNG

o descriptor keys (JDKEK, TDKEK and TDSK) are generated

o AES DPA mask is generated

During all calls to hab_rvt.exit(), the following operations are performed:

o the secure memory partition allocated for the secret key store is released.

0x000000 flg

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 54

Events:

If a CAAM operation fails, an audit event is logged with reason field HAB_ENG_FAIL and

engine field HAB_ENG_CAAM. For known-answer test failures, the status field is

HAB_WARNING, otherwise it is HAB_ENG_FAIL. Where possible, the data field

contains the following registers (in order):

o Secure Memory Status

o Job Ring Output Status Register

o Secure Memory Partition Owners

o Fault Address

o Fault Address Master ID

o Fault Address Detail

o CAAM Status

Algorithms - hash:

Although CAAM supports MD5, SHA-1 and SHA-256 hash algorithms, MD5 and SHA-1

are deprecated in HAB, so CAAM may be used only for SHA-256.

CAAM may be used for hash computation in commands such as Authenticate Data by using

a HAB_ENG_CAAM eng parameter providing the following constraints are met:

o CAAM is enabled

o the alg parameter is HAB_ALG_SHA256

o at most HAB_CAAM_BLOCK_MAX data blocks are covered by the hash (see

Authenticate Data)

o all data blocks reside in memory accessible to CAAM's DMA engine

Use of HAB_ENG_CAAM without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

CAAM may also be selected automatically by HAB if the eng parameter is

HAB_ENG_ANY and the hash computation is compatible with CAAM's constraints.

Algorithms – key wrap:

CAAM will be used by HAB for secret key installation from a Secret Key Blob in the

Install Key command providing the following constraints are met:

o CAAM is enabled

o the AES engine in CAAM is not disabled due to export control configuration

o the pcl parameter is HAB_PCL_BLOB

o the key_dat parameter locates memory accessible to CAAM's DMA engine

Use of CAAM without meeting the constraints will result in an unsuccessful operation with

an HAB_ENG_FAIL or HAB_UNS_PROTOCOL audit event being logged.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 55

The CAAM blob de-capsulation protocol is used to unwrap the Secret Key Blob. That

protocol requires a 64-bit Key_Modifier input, which is used by HAB to authenticate the

unencrypted data in the Secret Key Blob data structure. The Key_Modifier is constructed by

padding the unencrypted data on the right with zero bytes as shown below. The same

Key_Modifier must be used in the CAAM blob encapsulation protocol when wrapping the

key.

Algorithms - AEAD:

CAAM supports the AES-CCM algorithm in for authenticated encryption with associated

data (AEAD). This mode may be selected for any supported key size.

CAAM may be used for AEAD MAC computation in Authenticate Data commands by

using a HAB_ENG_CAAM eng parameter providing the following constraints are met:

o CAAM is enabled

o the AES engine in CAAM is not disabled due to export control configuration

o the alg parameter in the selected key is HAB_ALG_AES

o the mode parameter in the selected key is HAB_MODE_CCM

o at most 8 data blocks are covered by the hash (see Authenticate Data)

o all data blocks reside in memory accessible to CAAM's DMA engine

Use of HAB_ENG_CAAM without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

CAAM may also be selected automatically by HAB if the eng parameter is

HAB_ENG_ANY and the AEAD MAC computation is compatible with CAAM's

constraints.

Configuration:

CAAM may be configured for optimal performance and various memory types by means of

appropriate Write Data commands.

CAAM may be selected as the default engine for a specific algorithm using the Set

command. A default configuration is established in the same command.

5.7 Secure Non-Volatile Storage (SNVS)

Purpose:

The SNVS provides secure non-volatile (battery-backed) storage as well as security

state monitoring and Master Key selection. Non-volatile features include a secure

real time clock and a zeroizable master key. Master key selection determines the

mode alg 0x00000000 siz flg

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 56

major input to the Master KEK used when unwrapping a Secret Key Blob. HAB

supports SNVSv1.

Entry Sequence:

During all calls to hab_rvt.entry(), HAB verifies that the SNVS SSM state is either Trusted

or Secure if, and only if, the IC is configured as HAB_CFG_CLOSED. If a fault is detected,

a failure event is logged to the audit log.

Commands:

When used with HAB_ENG_SNVS, the Unlock command prevents specific locks being

applied when hab_rvt.exit() is first called on leaving the ROM. The val command parameter

is of the form:

where flg specifies the features to leave unlocked by using a bitwise OR of values from

hab_snvs_unlock_flag_t.

Exit sequence:

During the initial call to hab_rvt.exit() in ROM, the SNVS configuration is updated in

accordance with the IC boot and security configurations, and any SNVS Unlock commands.

If the IC is configured as HAB_CFG_CLOSED but the boot configuration is non-secure:

o this is an unsupported configuration

o SNVS is forced into the Soft Fail state

Otherwise, the behavior depends on the IC security configuration and any SNVS Unlock

commands:

o if the IC is configured as HAB_CFG_CLOSED then, unless a matching Unlock

command has been executed,

o SNVS LP SW reset is disabled

o SNVS zeroizable master key is locked against write

o if the IC is configured as HAB_CFG_OPEN or HAB_CFG_RETURN then,

o non-privileged access to SNVS registers is enabled

o otherwise, no changes are made to the SNVS settings

During all calls to hab_rvt.exit(), HAB verifies that the SNVS SSM state is either Trusted or

Secure if, and only if, the IC is configured as HAB_CFG_CLOSED. If a fault is detected, a

failure event is logged to the audit log.

Master key selection:

When present on an IC, SNVS provides the master key for use in the HAB_PCL_BLOB

key wrap protocol. SNVS offers a choice of master keys which can be selected by using a

value from hab_snvs_keys_t as the KEK index src in an Install Key command. A

0x000000 flg

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 57

HAB_INV_INDEX event can result from SNVS master key selection with

HAB_PCL_BLOB in the following circumstances:

o using a value not in hab_snvs_keys_t;

o using a value involving the zeroizable master key when it is not validly

programmed (see [SNVS]); or

o using a value when a different master key selection has been locked in the LP

Master Key Control register (see [SNVS]).

Following an Install Key command, the SNVS master key selection is restored to the value

it had prior to the command.

Events:

If an entry, exit or test operation fails, an audit event is logged with status field

HAB_FAILURE, reason field HAB_ENG_FAIL, engine field HAB_ENG_SNVS and data

field containing the following registers (in order):

o HP Security Violation Control

o HP Status

o HP Security Violation Status

o LP Control

o LP Master Key Control

o LP Security Violation Control

o LP Status

o LP Secure Real Time Counter MSB

o LP Secure Real Time Counter LSB

Note: If a failure occurs when the SNVS is not enabled then the audit event reason field is

HAB_WARNING rather than HAB_FAILURE.

Security state mapping:

SNVS supports all the states in HAB. The specific mapping is shown in the table below.

Note that HAB itself does not automatically move SNVS into Secure or Hard Fail states.

HAB State SCCv2 state

HAB_STATE_INITIAL Initialize

HAB_STATE_CHECK Check

HAB_STATE_NONSECURE Non-Secure

HAB_STATE_TRUSTED Trusted

HAB_STATE_ SECURE Secure

HAB_STATE_FAIL_SOFT Soft Fail

HAB_STATE_FAIL_HAR Hard Fail

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 58

Definitions:

/* SNVS master keys

 * Note that the first two master key selections are completely

 */

typedef enum hab_snvs_keys {

 HAB_SNVS_OTPMK = 0, /**< OTP master key */

 HAB_SNVS_OTPMK_ALIAS = 1, /**< OTP master key (alias) */

 HAB_SNVS_ZMK = 2, /**< Zeroizable master key */

 HAB_SNVS_CMK = 3 /**< Combined master key */

} hab_snvs_keys_t;

/* SNVS unlock flags */

typedef enum hab_snvs_unlock_flag {

 HAB_SNVS_UNLOCK_LP_SWR = 0x01, /**< Leave LP SW reset unlocked */

 HAB_SNVS_UNLOCK_ZMK_WRITE = 0x02 /**< Leave Zeroisable Master Key

 * write unlocked */

} hab_snvs_unlock_flag_t;

5.8 Software

Purpose:

The SW engine is used to implement cryptographic algorithms in contexts where a

HW accelerator is either unavailable or unusable.

HAB supports hash computations and public key algorithm calculations, depending

on the IC configuration.

Entry Sequence:

Apart from the self-test, no externally-visible operations occur for this engine.

Self-test:

During the initial call to hab_rvt.entry() in ROM, the SW engine performs a number of

known-answer tests. If any known-answer test fails, the SW engine is marked as

inoperative, and operations are directed to other engines where available. Subsequent

invocations of hab_rvt.entry() do not repeat the self-tests.

Exit sequence:

No externally-visible operations occur for this engine.

Events:

If an entry, exit or test operation fails, an audit event is logged with status field

HAB_FAILURE, reason field HAB_ENG_FAIL, engine field HAB_ENG_SW and empty

data field.

Algorithms - hash:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 59

SW may be used for hash computation in commands such as Authenticate Data by using a

HAB_ENG_SW eng parameter providing all of the following constraints are met:

o the required algorithm is one of:

o HAB_ALG_SHA1

o HAB_ALG_SHA256

Use of HAB_ENG_SW without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

SW may also be selected automatically by HAB if the eng parameter is HAB_ENG_ANY

and the hash computation is compatible with the SW engine's constraints.

Algorithms - signature:

Where there is no suitable HW accelerator, SW may be selected automatically by HAB for

signature computation in commands such as Authenticate Data providing all the following

constraints are met:

o the required algorithm is one of

o PKCS#1 Signature

Use of HAB_ENG_SW without meeting the constraints will result in an unsuccessful

operation with an HAB_UNS_ALGORITHM audit event being logged.

Algorithms – prime field arithmetic:

Where the SW engine supports public key operations, it may be selected automatically to

perform prime field arithmetic calculations in support of relevant Signature algorithms,

providing the following constraints are met:

o the input integers are at most 256 bytes (2048 bits);

o the modulus length is a multiple of 32 bits;

o the most significant bit of the modulus is 1;

o the modulus is an odd integer;

o the signature value is less than the modulus value;

o the exponent length is at least 1 byte;

o the exponent length is at most 4 bytes;

If the constraints are not met, and no suitable alternative engine is found, the current

operation is unsuccessful and a HAB_UNS_ALGORITHM audit event is logged.

State machine:

Where the IC has no HW security state machine, a SW engine is loaded to maintain the

security state. This is a very simple state machine which enforces no constraints on the

transitions between HAB states. It is initialized to HAB_STATE_CHECK on first entry to

the HAB library.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 60

The SW engine state machine may be removed in future versions.

Configuration:

No further configuration is supported when selecting the SW engine.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 61

6 Constants

This section contains the constant definitions used by HAB.

6.1 Header

Purpose:

Header fields are used to mark the start of various HAB data structures which may

contain a variable number of fields or fields of variable size.

Format:

A Header is a 4-byte array containing three components:

Parameters:

Apart from the self-test, no externally-visible operations occur for this engine.

Parameters:

tag constant identifying data structure. Tags are unique across HAB and separated by at

least Hamming distance two.

len structure length in 8-bit bytes, including the Header and must be at least four.

V HAB_MAJOR_VERSION for this data structure

v HAB_MINOR_VERSION for this data structure

6.2 Structure

Description:

Data structure constants.

External data structure tags:

Definition Value Description

HAB_TAG_IVT 0xd1 Image Vector Table

HAB_TAG_DCD 0xd2 Device Configuration Data

HAB_TAG_CSF 0xd4 Command Sequence File

HAB_TAG_CRT 0xd7 Certificate

HAB_TAG_SIG 0xd8 Signature

HAB_TAG_EVT 0xdb Event

HAB_TAG_RVT 0xdd ROM Vector Table

HAB_TAG_WRP 0x81 Wrapped Key

HAB_TAG_MAC 0xac Message Authentication Code

tag len par

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 62

HAB version:

Definition Value Description

HAB_MAJOR_VERSION 0x04 Major version of this HAB

release

HAB_MINOR_VERSION Varies depending on NXP

processor and HAB release

6.3 Command

Description:

Command constants.

Command tags:

Definition Value Description

HAB_CMD_SET 0xb1 Set

HAB_CMD_INS_KEY 0xbe Install Key

HAB_CMD_AUT_DAT 0xca Authenticate Data

HAB_CMD_WRT_DAT 0xcc Write Data

HAB_CMD_CHK_DAT 0xcf Check Data

HAB_CMD_NOP 0xc0 No Operation

HAB_CMD_INIT 0xb4 Initialize

HAB_CMD_UNLK 0xb2 Unlock

6.4 Protocol

Description:

Protocol constants.

Protocol tags:

Definition Value Description

HAB_PCL_SRK 0x03 SRK certificate format

HAB_PCL_X509 0x09 X.509v3 certificate format

HAB_PCL_CMS 0xc5 CMS/PKCS#7 signature format

HAB_PCL_BLOB 0xbb SHW-specific wrapped key format

HAB_PCL_AEAD 0xa3 Proprietary AEAD MAC format

6.5 Algorithms

Description:

Algorithm constants.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 63

Algorithm types:
The most-significant nibble of an algorithm ID denotes the algorithm type. Algorithms of

the same type share the same interface.

Definition Value Description

HAB_ALG_ANY 0x00 Algorithm type ANY

HAB_ALG_HASH 0x01 Hash algorithm type

HAB_ALG_SIG 0x02 Signature algorithm type

HAB_ALG_F 0x03 Finite field arithmetic

HAB_ALG_EC 0x04 Elliptic curve arithmetic

HAB_ALG_CIPHER 0x05 Cipher algorithm type

HAB_ALG_MODE 0x06 Cipher/hash modes

HAB_ALG_WRAP 0x07 Key wrap algorithm type

 Hash algorithms:

Definition Value Description

HAB_ALG_SHA1 0x11 SHA-1 algorithm ID

HAB_ALG_SHA256 0x17 SHA-256 algorithm ID

HAB_ALG_SHA512 0x1b SHA-512 algorithm ID

Signature algorithms

Definition Value Description

HAB_ALG_PKCS1 0x21 PKCS#1 RSA signature

algorithm

Cipher algorithms

Definition Value Description

HAB_ALG_AES 0x55 AES algorithm ID

Cipher or hash modes

Definition Value Description

HAB_MODE_CCM 0x66 Counter with CBC-MAC

Key wrap algorithms

Definition Value Description

HAB_ALG_BLOB 0x71 SHW-specific key wrap

6.6 Engine

Description:

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 64

Security Hardware (or SW) constants. The term engine denotes a peripheral

involved in one or more of the following functions:

o cryptographic computation

o security state management

o security alarm handling

o access control

 By extension, SW implementations of the above functionality are also termed

engines.

Engine plugin tags:

Definition Value Description

HAB_ENG_ANY 0x00 First compatible engine will be selected

automatically (no engine configuration

parameters are allowed)

HAB_ENG_SCC 0x03 Security controller

HAB_ENG_RTIC 0x05 Run-time integrity checker

HAB_ENG_SAHARA 0x06 Crypto accelerator

HAB_ENG_CSU 0x0a Central Security Unit

HAB_ENG_SRTC 0x0c Secure clock

HAB_ENG_DCP 0x1b Data Co-Processor

HAB_ENG_CAAM 0x1d Cryptographic Acceleration and Assurance

Module

HAB_ENG_SNVS 0x1e Secure Non-Volatile Storage

HAB_ENG_OCOTP 0x21 Fuse controller

HAB_ENG_DTCP 0x22 DTCP co-processor

HAB_ENG_ROM 0x36 Protected ROM area

HAB_ENG_HDCP 0x24 HDCP co-processor

 HAB_ENG_SW 0xff Software engine

Miscellaneous Engine Definitions:

Definition Value Description

HAB_RTIC_KEEP 0x80 Retain reference hash value for

later run time checking

HAB_DCP_BLOCK_MAX 6 Maximum on non-contiguous

memory blocks supported for DCP

operations

HAB_SAHARA BLOCK_MAX 12 Maximum on non-contiguous

memory blocks supported for

SAHARA operations

HAB_CAAM_BLOCK_MAX 8 Maximum on non-contiguous

memory blocks supported for

CAAM operations

HAB_CAAM_UNLOCK_MID 0x1 Leave Job Ring and DECO master

ID registers unlocked

HAB_CAAM_INIT_RNG 0x2 Instantiate RNG state handle 0,

generate descriptor keys, set AES

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 65

Definition Value Description

DPA mask, block state handle 0

test instantiation.

6.7 Audit Events

6.7.1 Reason
Description:

Event reason definitions.

Reason definitions:

Definition Value Description

HAB_RSN_ANY 0x00 Match any reason in

hab_rvt.report_event()

HAB_ENG_FAIL 0x30 Engine failure

HAB_INV_ADDRESS 0x22 Invalid address: access denied

HAB_INV_ASSERTION 0x0c Invalid assertion

HAB_INV_CALL 0x28 Function called out of sequence

HAB_INV_CERTIFICATE 0x21 Invalid certificate

HAB_INV_COMMAND 0x06 Invalid command: command malformed

HAB_INV_CSF 0x11 Invalid Command Sequence File

HAB_INV_DCD 0x27 Invalid Device Configuration Data.

HAB_INV_INDEX 0x0f Invalid index: access denied

HAB_INV_IVT 0x05 Invalid Image Vector Table

HAB_INV_KEY 0x1d Invalid key

HAB_INV_RETURN 0x1e Failed callback function

 HAB_INV_SIGNATURE 0x18 Invalid signature

HAB_INV_SIZE 0x17 Invalid data size

HAB_MEM_FAIL 0x2e Memory failure

HAB_OVR_COUNT 0x2b Expired poll count

HAB_OVR_STORAGE 0x2d Exhausted storage region

HAB_UNS_ALGORITHM 0x12 Unsupported algorithm

HAB_UNS_COMMAND 0x03 Unsupported command

HAB_UNS_ENGINE 0x0a Unsupported engine

HAB_UNS_ITEM 0x24 Unsupported configuration item

HAB_UNS_KEY 0x1b Unsupported key type or parameters

HAB_UNS_PROTOCOL 0x14 Unsupported protocol

HAB_UNS_STATE 0x09 Unsuitable state

6.7.2 Context
Description:

Event context definitions.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 66

Context definitions:

Definition Value Description

HAB_CTX_ANY 0x00 Match any context in

hab_rvt.report_event()

HAB_CTX_ENTRY 0xe1 Event logged in hab_rvt.entry()

HAB_CTX_TARGET 0x33 Event logged in hab_rvt.check_target()

HAB_CTX_AUTHENTICATE 0x0a Event logged in

hab_rvt.authenticate_image()

HAB_CTX_DCD 0xdd Event logged in hab_rvt.run_dcd()

HAB_CTX_CSF 0xcf Event logged in hab_rvt.run_csf()

HAB_CTX_COMMAND 0xc0 Event logged executing Command

Sequence File or Device Configuration

Data command

HAB_CTX_AUT_DAT 0xdb Authenticated data block

HAB_CTX_ASSERT 0xa0 Event logged in hab_rvt.assert()

HAB_CTX_EXIT 0xee Event logged in hab_rvt.exit()

6.8 Configuration, Status and State

6.8.1 Configuration
Description:

HAB configuration definitions.

Configuration definitions:

Definition Value Description

HAB_CFG_RETURN 0x33 Field Return IC

HAB_CFG_OPEN 0xf0 Non-secure IC

HAB_CFG_CLOSED 0xcc Secure IC

6.8.2 Status
Description:

HAB status definitions.

Configuration definitions:

Definition Value Description

HAB_STS_ANY 0x00 Match any status in hab_rvt.report_event().

HAB_FAILURE 0x33 Operation failed

HAB_WARNING 0x69 Operation completed with warning

HAB_SUCCESS 0xf0 Operation completed successfully

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 67

6.8.3 State
Description:

HAB state definitions.

Configuration definitions:

Definition Value Description

HAB_STATE_INITIAL 0x33 Initializing state (transitory)

HAB_STATE_CHECK 0x55 Check state (non-secure)

HAB_STATE_NONSECURE 0x66 Non-secure state

HAB_STATE_TRUSTED 0x99 Trusted state

HAB_STATE_SECURE 0xaa Secure state

HAB_STATE_FAIL_SOFT 0xcc Soft fail state

HAB_STATE_FAIL_HARD 0xff Hard fail state (terminal).

HAB_STATE_NONE 0xf0 No security state machine

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 68

Appendix A: Interpreting HAB Event Data
from Report_Event() API

The below are two sets of event data returned from hab_rvt.report_event() and illustrate how to

interpret the data:

Example 1:
 0xdb 0x00 0x14 0x41

0x33 0x0c 0xa0 0x00

0x00 0x00 0x00 0x00

0x27 0x80 0x00 0x00

0x00 0x00 0x00 0x20

0x00 0x91 0x00 0x00

0x00 0x00 0x02 0xf0

• First confirm that the data is an event consisting of a header, an SRCE (Status, Reason,

Context, Engine) word and context dependent data. The first byte is the tag field which

indicates an event when set to HAB_TAG_EVENT. The next two bytes the length and

the last byte is the HAB version.

Header Field: db 00 14 41

 | | | |

 | | | +-- HAB version

 | +--+-- Event data length in bytes

 +-- Tag: 0xdb = Event

• The next word is the SRCE (Status|Reason|Context|Engine) which indicates the type of

event that occurred. The following is an example:

SRCE Field: 33 0c a0 00

 | | | |

 | | | +-- ENG = HAB_ENG_ANY

 | | +-- CTX = HAB_CTX_ASSERT

 | +-- RSN = HAB_INV_ASSERTION

 +-- STS = HAB_FAILURE

• In this case the context is the hab_rvt.assert()API. An assertion event means that one of

the following required areas is not signed as documented in the Operation section for

authenticate_image() API:

• IVT;

• DCD (if provided);

• Boot Data (initial byte - if provided);

• Entry point (initial word).

The post condition for hab_rvt.assert() indicates the data portion of the event are:

1. a type,

2. data pointer and,

3. a count indicating the size of the block in bytes.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 69

Currently the only type defined is 0x00000000 (Assertion Block). So for this

event the remaining bytes define the data blocks that do not have a required valid

signature:

• Address Event 1: 27 80 00 00

• Length Event 1: 00 00 00 20

• Address Event2: 00 91 00 00

• Length Event 2: 00 00 02 f0

The key to interpreting events is to always start with the Context of the SRCE field in the

event. The format of the data included in an event depends on context. If the context is

HAB_CTX_CMD, then the first byte of the data field will match the one of the defined

command tags. For example, 0xBE (HAB_CMD_INS_KEY) means that the remaining data

matches the install key command format. This identifies the command causing the event which

is useful for debugging CSFs.

There are also cases where the context will be HAB_CMD_INS_KEY and the first byte does

not match a command tag. In this case, check the engine field of (SRCE) to see if it is non-zero

(i.e. not HAB_ENG_ANY). If so, then this means the event was triggered by a HW engine and

the remaining data contains select registers from the HW engine. Section 5 contains details of

the registers included in engine related events.

High Assurance Boot Version 4 Application Programming Interface Reference Manual

Copyright 2018-2019 NXP • 70

Example 2:
 0xdb 0x00 0x1c 0x41

0x33 0x18 0x0c 0x00

0xca 0x00 0x14 0x00

0x02 0xc5 0x00 0x00

0x00 0x00 0x07 0x40

0x77 0x80 0x04 0x00

0x00 0x02 0x9c 0x00

• As in the previous example the first word is the header with the first byte being the tag

field (e.g. 0xdb).

• Now for the SRCE field:

 SRCE Field: 33 18 0c 00

 | | | |

 | | | +-- ENG = HAB_ENG_ANY (0x00)

 | | +-- CTX = HAB_CTX_COMMAND (0x0c)

 | +-- RSN = HAB_INV_SIGNATURE (0x0C)

 +-- STS = HAB_FAILURE (0x33)

• Given the context is HAB_CTX_COMMAND this means the remaining bytes

correspond to the CSF command that caused the event:

ca 00 1c 00

| | | |

| | | +-- Event flags

| +--+-- Length = 0x001c

+-- HAB_CMD_AUT_DAT = Authenticate data command

02 c5 00 00

| | | |

| | | +-- Configuration = default

| | +-- Engine = HAB_ENG_ANY

| +-- Protocol = HAB_PCL_CMS

+-- Verification key index = 2

Index 0 corresponds to the SRK

Index 1 corresponds to the CSF key

Index 2 or greater corresponds to an Image key

00 00 07 40 – Signature start address (relative offset

from CSF address in IVT

77 80 04 00 – Data block to be verified starting address

00 02 9c 00 – Length of data block to verify in bytes

This event indicates that the digital signature authentication of the data block starting at

0x77800400 has failed.

