1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
package main
import (
"fmt"
"os"
"path"
"path/filepath"
"slices"
"sort"
"strconv"
"strings"
"unsafe"
"golang.org/x/sys/unix"
"github.com/lxc/incus/v6/internal/linux"
"github.com/lxc/incus/v6/internal/server/cgroup"
"github.com/lxc/incus/v6/internal/server/device"
"github.com/lxc/incus/v6/internal/server/instance"
"github.com/lxc/incus/v6/internal/server/instance/instancetype"
"github.com/lxc/incus/v6/internal/server/state"
"github.com/lxc/incus/v6/shared/logger"
"github.com/lxc/incus/v6/shared/resources"
"github.com/lxc/incus/v6/shared/util"
)
type deviceTaskCPU struct {
id int64
strId string
count *int
}
type deviceTaskCPUs []deviceTaskCPU
func (c deviceTaskCPUs) Len() int { return len(c) }
func (c deviceTaskCPUs) Less(i, j int) bool { return *c[i].count < *c[j].count }
func (c deviceTaskCPUs) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
func deviceNetlinkListener() (chan []string, chan device.USBEvent, chan device.UnixHotplugEvent, error) {
NETLINK_KOBJECT_UEVENT := 15
UEVENT_BUFFER_SIZE := 2048
fd, err := unix.Socket(
unix.AF_NETLINK, unix.SOCK_RAW|unix.SOCK_CLOEXEC,
NETLINK_KOBJECT_UEVENT,
)
if err != nil {
return nil, nil, nil, err
}
nl := unix.SockaddrNetlink{
Family: unix.AF_NETLINK,
Pid: uint32(os.Getpid()),
Groups: 3,
}
err = unix.Bind(fd, &nl)
if err != nil {
return nil, nil, nil, err
}
chCPU := make(chan []string, 1)
chUSB := make(chan device.USBEvent)
chUnix := make(chan device.UnixHotplugEvent)
go func(chCPU chan []string, chUSB chan device.USBEvent, chUnix chan device.UnixHotplugEvent) {
b := make([]byte, UEVENT_BUFFER_SIZE*2)
for {
r, err := unix.Read(fd, b)
if err != nil {
continue
}
ueventBuf := make([]byte, r)
copy(ueventBuf, b)
udevEvent := false
if strings.HasPrefix(string(ueventBuf), "libudev") {
udevEvent = true
// Skip the header that libudev prepends
ueventBuf = ueventBuf[40 : len(ueventBuf)-1]
}
ueventLen := 0
ueventParts := strings.Split(string(ueventBuf), "\x00")
for i, part := range ueventParts {
if strings.HasPrefix(part, "SEQNUM=") {
ueventParts = slices.Delete(ueventParts, i, i+1)
break
}
}
props := map[string]string{}
for _, part := range ueventParts {
// libudev string prefix distinguishes udev events from kernel uevents
if strings.HasPrefix(part, "libudev") {
udevEvent = true
continue
}
ueventLen += len(part) + 1
fields := strings.SplitN(part, "=", 2)
if len(fields) != 2 {
continue
}
props[fields[0]] = fields[1]
}
ueventLen--
if udevEvent {
// The kernel always prepends this and udev expects it.
kernelPrefix := fmt.Sprintf("%s@%s", props["ACTION"], props["DEVPATH"])
ueventParts = append([]string{kernelPrefix}, ueventParts...)
ueventLen += len(kernelPrefix)
}
if props["SUBSYSTEM"] == "cpu" && !udevEvent {
if props["DRIVER"] != "processor" {
continue
}
if props["ACTION"] != "offline" && props["ACTION"] != "online" {
continue
}
// As CPU re-balancing affects all containers, no need to queue them
select {
case chCPU <- []string{path.Base(props["DEVPATH"]), props["ACTION"]}:
default:
// Channel is full, drop the event
}
}
if props["SUBSYSTEM"] == "net" && !udevEvent {
if props["ACTION"] != "add" && props["ACTION"] != "removed" {
continue
}
if !util.PathExists(fmt.Sprintf("/sys/class/net/%s", props["INTERFACE"])) {
continue
}
}
if props["SUBSYSTEM"] == "usb" && !udevEvent {
parts := strings.Split(props["PRODUCT"], "/")
if len(parts) < 2 {
continue
}
major, ok := props["MAJOR"]
if !ok {
continue
}
minor, ok := props["MINOR"]
if !ok {
continue
}
devname, ok := props["DEVNAME"]
if !ok {
continue
}
busnum, ok := props["BUSNUM"]
if !ok {
continue
}
devnum, ok := props["DEVNUM"]
if !ok {
continue
}
zeroPad := func(s string, l int) string {
return strings.Repeat("0", l-len(s)) + s
}
usb, err := device.USBNewEvent(
props["ACTION"],
/* udev doesn't zero pad these, while
* everything else does, so let's zero pad them
* for consistency
*/
zeroPad(parts[0], 4),
zeroPad(parts[1], 4),
props["SERIAL"],
major,
minor,
busnum,
devnum,
devname,
ueventParts[:len(ueventParts)-1],
ueventLen,
)
if err != nil {
logger.Error("Error reading usb device", logger.Ctx{"err": err, "path": props["PHYSDEVPATH"]})
continue
}
chUSB <- usb
}
// unix hotplug device events rely on information added by udev
if udevEvent {
action := props["ACTION"]
if action != "add" && action != "remove" {
continue
}
subsystem, ok := props["SUBSYSTEM"]
if !ok {
continue
}
devname, ok := props["DEVNAME"]
if !ok {
continue
}
major, ok := props["MAJOR"]
if !ok {
continue
}
minor, ok := props["MINOR"]
if !ok {
continue
}
vendor := ""
product := ""
if action == "add" {
vendor, product, ok = ueventParseVendorProduct(props, subsystem, devname)
if !ok {
continue
}
}
zeroPad := func(s string, l int) string {
return strings.Repeat("0", l-len(s)) + s
}
// zeropad
if len(vendor) < 4 {
vendor = zeroPad(vendor, 4)
}
if len(product) < 4 {
product = zeroPad(product, 4)
}
unix, err := device.UnixHotplugNewEvent(
action,
/* udev doesn't zero pad these, while
* everything else does, so let's zero pad them
* for consistency
*/
vendor,
product,
major,
minor,
subsystem,
devname,
ueventParts[:len(ueventParts)-1],
ueventLen,
)
if err != nil {
logger.Error("Error reading unix device", logger.Ctx{"err": err, "path": props["PHYSDEVPATH"]})
continue
}
chUnix <- unix
}
}
}(chCPU, chUSB, chUnix)
return chCPU, chUSB, chUnix, nil
}
/*
* fillFixedInstances fills the `fixedInstances` map with the instances that have been pinned to specific CPUs.
* The `fixedInstances` map is a map of CPU IDs to a list of instances that have been pinned to that CPU.
* The `targetCpuPool` is a list of CPU IDs that are available for pinning.
* The `targetCpuNum` is the number of CPUs that are required for pinning.
* The `loadBalancing` flag indicates whether the CPU pinning should be load balanced or not (e.g, NUMA placement when `limits.cpu` is a single number which means
* a required number of vCPUs per instance that can be chosen within a CPU pool).
*/
func fillFixedInstances(fixedInstances map[int64][]instance.Instance, inst instance.Instance, effectiveCpus []int64, targetCpuPool []int64, targetCpuNum int, loadBalancing bool) {
if len(targetCpuPool) < targetCpuNum {
diffCount := len(targetCpuPool) - targetCpuNum
logger.Warnf("%v CPUs have been required for pinning, but %v CPUs won't be allocated", len(targetCpuPool), -diffCount)
targetCpuNum = len(targetCpuPool)
}
// If the `targetCpuPool` has been manually specified (explicit CPU IDs/ranges specified with `limits.cpu`)
if len(targetCpuPool) == targetCpuNum && !loadBalancing {
for _, nr := range targetCpuPool {
if !slices.Contains(effectiveCpus, nr) {
continue
}
_, ok := fixedInstances[nr]
if ok {
fixedInstances[nr] = append(fixedInstances[nr], inst)
} else {
fixedInstances[nr] = []instance.Instance{inst}
}
}
return
}
// If we need to load-balance the instance across the CPUs of `targetCpuPool` (e.g, NUMA placement),
// the heuristic is to sort the `targetCpuPool` by usage (number of instances already pinned to each CPU)
// and then assign the instance to the first `desiredCpuNum` least used CPUs.
usage := map[int64]deviceTaskCPU{}
for _, id := range targetCpuPool {
cpu := deviceTaskCPU{}
cpu.id = id
cpu.strId = fmt.Sprintf("%d", id)
count := 0
_, ok := fixedInstances[id]
if ok {
count = len(fixedInstances[id])
}
cpu.count = &count
usage[id] = cpu
}
sortedUsage := make(deviceTaskCPUs, 0)
for _, value := range usage {
sortedUsage = append(sortedUsage, value)
}
sort.Sort(sortedUsage)
count := 0
for _, cpu := range sortedUsage {
if count == targetCpuNum {
break
}
id := cpu.id
_, ok := fixedInstances[id]
if ok {
fixedInstances[id] = append(fixedInstances[id], inst)
} else {
fixedInstances[id] = []instance.Instance{inst}
}
count++
}
}
// deviceTaskBalance is used to balance the CPU load across containers running on a host.
// It first checks if CGroup support is available and returns if it isn't.
// It then retrieves the effective CPU list (the CPUs that are guaranteed to be online) and isolates any isolated CPUs.
// After that, it loads all instances of containers running on the node and iterates through them.
//
// For each container, it checks its CPU limits and determines whether it is pinned to specific CPUs or can use the load-balancing mechanism.
// If it is pinned, the function adds it to the fixedInstances map with the CPU numbers it is pinned to.
// If not, the container will be included in the load-balancing calculation,
// and the number of CPUs it can use is determined by taking the minimum of its assigned CPUs and the available CPUs. Note that if
// NUMA placement is enabled (`limits.cpu.nodes` is not empty), we apply a similar load-balancing logic to the `fixedInstances` map
// with a constraint being the number of vCPUs and the CPU pool being the CPUs pinned to a set of NUMA nodes.
//
// Next, the function balance the CPU usage by iterating over all the CPUs and dividing the containers into those that
// are pinned to a specific CPU and those that are load-balanced. For the pinned containers,
// it adds them to the pinning map with the CPU number it's pinned to.
// For the load-balanced containers, it sorts the available CPUs based on their usage count and assigns them to containers
// in ascending order until the required number of CPUs have been assigned.
// Finally, the pinning map is used to set the new CPU pinning for each container, updating it to the new balanced state.
//
// Overall, this function ensures that the CPU resources of the host are utilized effectively amongst all the containers running on it.
func deviceTaskBalance(s *state.State) {
minFunc := func(x, y int) int {
if x < y {
return x
}
return y
}
// Don't bother running when CGroup support isn't there
if !s.OS.CGInfo.Supports(cgroup.CPUSet, nil) {
return
}
// Get effective cpus list - those are all guaranteed to be online
cg, err := cgroup.NewFileReadWriter(1, true)
if err != nil {
logger.Errorf("Unable to load cgroup writer: %v", err)
return
}
effectiveCpus, err := cg.GetEffectiveCpuset()
if err != nil {
// Older kernel - use cpuset.cpus
effectiveCpus, err = cg.GetCpuset()
if err != nil {
logger.Errorf("Error reading host's cpuset.cpus")
return
}
}
effectiveCpusInt, err := resources.ParseCpuset(effectiveCpus)
if err != nil {
logger.Errorf("Error parsing effective CPU set")
return
}
isolatedCpusInt := resources.GetCPUIsolated()
effectiveCpusSlice := []string{}
for _, id := range effectiveCpusInt {
if slices.Contains(isolatedCpusInt, id) {
continue
}
effectiveCpusSlice = append(effectiveCpusSlice, fmt.Sprintf("%d", id))
}
effectiveCpus = strings.Join(effectiveCpusSlice, ",")
cpus, err := resources.ParseCpuset(effectiveCpus)
if err != nil {
logger.Error("Error parsing host's cpu set", logger.Ctx{"cpuset": effectiveCpus, "err": err})
return
}
// Iterate through the instances
instances, err := instance.LoadNodeAll(s, instancetype.Container)
if err != nil {
logger.Error("Problem loading instances list", logger.Ctx{"err": err})
return
}
// Get CPU topology.
cpusTopology, err := resources.GetCPU()
if err != nil {
logger.Errorf("Unable to load system CPUs information: %v", err)
return
}
// Build a map of NUMA node to CPU threads.
numaNodeToCPU := make(map[int64][]int64)
for _, cpu := range cpusTopology.Sockets {
for _, core := range cpu.Cores {
for _, thread := range core.Threads {
// Skip any isolated CPU thread.
if slices.Contains(isolatedCpusInt, thread.ID) {
continue
}
numaNodeToCPU[int64(thread.NUMANode)] = append(numaNodeToCPU[int64(thread.NUMANode)], thread.ID)
}
}
}
fixedInstances := map[int64][]instance.Instance{}
balancedInstances := map[instance.Instance]int{}
for _, c := range instances {
var numaCpus []int64
var numaCpusStr []string
conf := c.ExpandedConfig()
cpuNodes := conf["limits.cpu.nodes"]
if cpuNodes != "" {
if cpuNodes == "balanced" {
cpuNodes = conf["volatile.cpu.nodes"]
}
numaNodeSet, err := resources.ParseNumaNodeSet(cpuNodes)
if err != nil {
logger.Error("Error parsing numa node set", logger.Ctx{"numaNodes": cpuNodes, "err": err})
continue
}
for _, numaNode := range numaNodeSet {
numaCpus = append(numaCpus, numaNodeToCPU[numaNode]...)
}
for _, numaCPU := range numaCpus {
numaCpusStr = append(numaCpusStr, fmt.Sprintf("%d", numaCPU))
}
}
cpulimit, ok := conf["limits.cpu"]
if !ok || cpulimit == "" {
// If restricted to specific NUMA node(s), only use their CPU threads.
if cpuNodes != "" {
cpulimit = strings.Join(numaCpusStr, ",")
} else {
cpulimit = effectiveCpus
}
}
// Check that the container is running.
// We use InitPID here rather than IsRunning because this task is triggered during the container's
// onStart hook, which is during the time that the start lock is held, which causes IsRunning to
// return false (because the container hasn't fully started yet) but it is sufficiently started to
// have its cgroup CPU limits set.
if c.InitPID() <= 0 {
continue
}
count, err := strconv.Atoi(cpulimit)
if err == nil {
// Load-balance
count = minFunc(count, len(cpus))
if len(numaCpus) > 0 {
fillFixedInstances(fixedInstances, c, cpus, numaCpus, count, true)
} else {
balancedInstances[c] = count
}
} else {
// Pinned
containerCpus, err := resources.ParseCpuset(cpulimit)
if err != nil {
return
}
if conf["limits.cpu"] != "" && len(numaCpus) > 0 {
logger.Warnf("The pinned CPUs: %v, override the NUMA configuration with the CPUs: %v", containerCpus, numaCpus)
}
fillFixedInstances(fixedInstances, c, cpus, containerCpus, len(containerCpus), false)
}
}
// Balance things
pinning := map[instance.Instance][]string{}
usage := map[int64]deviceTaskCPU{}
for _, id := range cpus {
cpu := deviceTaskCPU{}
cpu.id = id
cpu.strId = fmt.Sprintf("%d", id)
count := 0
cpu.count = &count
usage[id] = cpu
}
for cpu, ctns := range fixedInstances {
c, ok := usage[cpu]
if !ok {
logger.Errorf("Internal error: container using unavailable cpu")
continue
}
id := c.strId
for _, ctn := range ctns {
_, ok := pinning[ctn]
if ok {
pinning[ctn] = append(pinning[ctn], id)
} else {
pinning[ctn] = []string{id}
}
*c.count += 1
}
}
sortedUsage := make(deviceTaskCPUs, 0)
for _, value := range usage {
sortedUsage = append(sortedUsage, value)
}
for ctn, count := range balancedInstances {
sort.Sort(sortedUsage)
for _, cpu := range sortedUsage {
if count == 0 {
break
}
count -= 1
id := cpu.strId
_, ok := pinning[ctn]
if ok {
pinning[ctn] = append(pinning[ctn], id)
} else {
pinning[ctn] = []string{id}
}
*cpu.count += 1
}
}
// Set the new pinning
for ctn, set := range pinning {
// Confirm the container didn't just stop
if ctn.InitPID() <= 0 {
continue
}
sort.Strings(set)
cg, err := ctn.CGroup()
if err != nil {
logger.Error("balance: Unable to get cgroup struct", logger.Ctx{"name": ctn.Name(), "err": err, "value": strings.Join(set, ",")})
continue
}
err = cg.SetCpuset(strings.Join(set, ","))
if err != nil {
logger.Error("balance: Unable to set cpuset", logger.Ctx{"name": ctn.Name(), "err": err, "value": strings.Join(set, ",")})
}
}
}
// deviceEventListener starts the event listener for resource scheduling.
// Accepts stateFunc which will be called each time it needs a fresh state.State.
func deviceEventListener(stateFunc func() *state.State) {
chNetlinkCPU, chUSB, chUnix, err := deviceNetlinkListener()
if err != nil {
logger.Errorf("scheduler: Couldn't setup netlink listener: %v", err)
return
}
for {
select {
case e := <-chNetlinkCPU:
if len(e) != 2 {
logger.Errorf("Scheduler: received an invalid cpu hotplug event")
continue
}
s := stateFunc()
if !s.OS.CGInfo.Supports(cgroup.CPUSet, nil) {
continue
}
logger.Debugf("Scheduler: cpu: %s is now %s: re-balancing", e[0], e[1])
deviceTaskBalance(s)
case e := <-chUSB:
device.USBRunHandlers(stateFunc(), &e)
case e := <-chUnix:
device.UnixHotplugRunHandlers(stateFunc(), &e)
case e := <-cgroup.DeviceSchedRebalance:
if len(e) != 3 {
logger.Errorf("Scheduler: received an invalid rebalance event")
continue
}
s := stateFunc()
if !s.OS.CGInfo.Supports(cgroup.CPUSet, nil) {
continue
}
logger.Debugf("Scheduler: %s %s %s: re-balancing", e[0], e[1], e[2])
deviceTaskBalance(s)
}
}
}
// devicesRegister calls the Register() function on all supported devices so they receive events.
// This also has the effect of actively reconnecting to any running VM monitor sockets.
func devicesRegister(instances []instance.Instance) {
logger.Debug("Registering running instances")
for _, inst := range instances {
if !inst.IsRunning() { // For VMs this will also trigger a connection to the QMP socket if running.
continue
}
inst.RegisterDevices()
}
}
func getHidrawDevInfo(fd int) (string, string, error) {
type hidInfo struct {
busType uint32
vendor int16
product int16
}
var info hidInfo
_, _, errno := unix.Syscall(unix.SYS_IOCTL, uintptr(fd), linux.IoctlHIDIOCGrawInfo, uintptr(unsafe.Pointer(&info)))
if errno != 0 {
return "", "", fmt.Errorf("Failed setting received UUID: %w", unix.Errno(errno))
}
return fmt.Sprintf("%04x", info.vendor), fmt.Sprintf("%04x", info.product), nil
}
func ueventParseVendorProduct(props map[string]string, subsystem string, devname string) (string, string, bool) {
vendor, vendorOk := props["ID_VENDOR_ID"]
product, productOk := props["ID_MODEL_ID"]
if vendorOk && productOk {
return vendor, product, true
}
if subsystem != "hidraw" {
return "", "", false
}
if !filepath.IsAbs(devname) {
return "", "", false
}
file, err := os.OpenFile(devname, os.O_RDWR, 0o000)
if err != nil {
return "", "", false
}
defer func() { _ = file.Close() }()
vendor, product, err = getHidrawDevInfo(int(file.Fd()))
if err != nil {
logger.Debugf("Failed to retrieve device info from hidraw device \"%s\"", devname)
return "", "", false
}
return vendor, product, true
}
|