1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
/*
INDI Developers Manual
Tutorial #7
"Simple telescope simulator"
We construct a most basic (and useless) device driver to illustrate INDI.
Refer to README, which contains instruction on how to build this driver, and use it
with an INDI-compatible client.
*/
#include "simple_telescope_simulator.h"
#include "indicom.h"
#include <memory>
using namespace INDI::AlignmentSubsystem;
// We declare an auto pointer to ScopeSim.
std::unique_ptr<ScopeSim> telescope_sim(new ScopeSim());
ScopeSim::ScopeSim() :
DBG_SIMULATOR(INDI::Logger::getInstance().addDebugLevel("Simulator Verbose", "SIMULATOR"))
{
}
bool ScopeSim::Abort()
{
if (MovementNSSP.s == IPS_BUSY)
{
IUResetSwitch(&MovementNSSP);
MovementNSSP.s = IPS_IDLE;
IDSetSwitch(&MovementNSSP, nullptr);
}
if (MovementWESP.s == IPS_BUSY)
{
MovementWESP.s = IPS_IDLE;
IUResetSwitch(&MovementWESP);
IDSetSwitch(&MovementWESP, nullptr);
}
if (EqNP.s == IPS_BUSY)
{
EqNP.s = IPS_IDLE;
IDSetNumber(&EqNP, nullptr);
}
TrackState = SCOPE_IDLE;
AxisStatusRA = AxisStatusDEC = STOPPED; // This marvelous inertia free scope can be stopped instantly!
AbortSP.s = IPS_OK;
IUResetSwitch(&AbortSP);
IDSetSwitch(&AbortSP, nullptr);
LOG_INFO("Telescope aborted.");
return true;
}
bool ScopeSim::canSync()
{
return true;
}
bool ScopeSim::Connect()
{
SetTimer(getCurrentPollingPeriod());
return true;
}
bool ScopeSim::Disconnect()
{
return true;
}
const char *ScopeSim::getDefaultName()
{
return (const char *)"Simple Telescope Simulator";
}
bool ScopeSim::Goto(double ra, double dec)
{
DEBUGF(DBG_SIMULATOR, "Goto - Celestial reference frame target right ascension %lf(%lf) declination %lf",
ra * 360.0 / 24.0, ra, dec);
if (ISS_ON == IUFindSwitch(&CoordSP, "TRACK")->s)
{
char RAStr[32], DecStr[32];
fs_sexa(RAStr, ra, 2, 3600);
fs_sexa(DecStr, dec, 2, 3600);
CurrentTrackingTarget.rightascension = ra;
CurrentTrackingTarget.declination = dec;
DEBUG(DBG_SIMULATOR, "Goto - tracking requested");
}
// Call the alignment subsystem to translate the celestial reference frame coordinate
// into a telescope reference frame coordinate
TelescopeDirectionVector TDV;
INDI::IHorizontalCoordinates AltAz { 0, 0 };
if (TransformCelestialToTelescope(ra, dec, 0.0, TDV))
{
// The alignment subsystem has successfully transformed my coordinate
AltitudeAzimuthFromTelescopeDirectionVector(TDV, AltAz);
}
else
{
// The alignment subsystem cannot transform the coordinate.
// Try some simple rotations using the stored observatory position if any
INDI::IEquatorialCoordinates EquatorialCoordinates { ra, dec };
INDI::EquatorialToHorizontal(&EquatorialCoordinates, &m_Location, ln_get_julian_from_sys(), &AltAz);
TDV = TelescopeDirectionVectorFromAltitudeAzimuth(AltAz);
switch (GetApproximateMountAlignment())
{
case ZENITH:
break;
case NORTH_CELESTIAL_POLE:
// Rotate the TDV coordinate system clockwise (negative) around the y axis by 90 minus
// the (positive)observatory latitude. The vector itself is rotated anticlockwise
TDV.RotateAroundY(m_Location.latitude - 90.0);
break;
case SOUTH_CELESTIAL_POLE:
// Rotate the TDV coordinate system anticlockwise (positive) around the y axis by 90 plus
// the (negative)observatory latitude. The vector itself is rotated clockwise
TDV.RotateAroundY(m_Location.latitude + 90.0);
break;
}
AltitudeAzimuthFromTelescopeDirectionVector(TDV, AltAz);
}
// My altitude encoder runs -90 to +90
if ((AltAz.altitude > 90.0) || (AltAz.altitude < -90.0))
{
DEBUG(DBG_SIMULATOR, "Goto - Altitude out of range");
// This should not happen
return false;
}
// My polar encoder runs 0 to +360
if ((AltAz.azimuth > 360.0) || (AltAz.azimuth < -360.0))
{
DEBUG(DBG_SIMULATOR, "Goto - Azimuth out of range");
// This should not happen
return false;
}
if (AltAz.azimuth < 0.0)
{
DEBUG(DBG_SIMULATOR, "Goto - Azimuth negative");
AltAz.azimuth = 360.0 + AltAz.azimuth;
}
DEBUGF(DBG_SIMULATOR, "Goto - Scope reference frame target altitude %lf azimuth %lf", AltAz.altitude,
AltAz.azimuth);
GotoTargetMicrostepsDEC = int(AltAz.altitude * MICROSTEPS_PER_DEGREE);
if (GotoTargetMicrostepsDEC == CurrentEncoderMicrostepsDEC)
AxisStatusDEC = STOPPED;
else
{
if (GotoTargetMicrostepsDEC > CurrentEncoderMicrostepsDEC)
AxisDirectionDEC = FORWARD;
else
AxisDirectionDEC = REVERSE;
AxisStatusDEC = SLEWING_TO;
}
GotoTargetMicrostepsRA = int(AltAz.azimuth * MICROSTEPS_PER_DEGREE);
if (GotoTargetMicrostepsRA == CurrentEncoderMicrostepsRA)
AxisStatusRA = STOPPED;
else
{
if (GotoTargetMicrostepsRA > CurrentEncoderMicrostepsRA)
AxisDirectionRA = (GotoTargetMicrostepsRA - CurrentEncoderMicrostepsRA) < MICROSTEPS_PER_REVOLUTION / 2.0 ?
FORWARD :
REVERSE;
else
AxisDirectionRA = (CurrentEncoderMicrostepsRA - GotoTargetMicrostepsRA) < MICROSTEPS_PER_REVOLUTION / 2.0 ?
REVERSE :
FORWARD;
AxisStatusRA = SLEWING_TO;
}
TrackState = SCOPE_SLEWING;
return true;
}
bool ScopeSim::initProperties()
{
/* Make sure to init parent properties first */
INDI::Telescope::initProperties();
// Let's simulate it to be an F/10 8" telescope
ScopeParametersN[0].value = 203;
ScopeParametersN[1].value = 2000;
ScopeParametersN[2].value = 203;
ScopeParametersN[3].value = 2000;
TrackState = SCOPE_IDLE;
/* Add debug controls so we may debug driver if necessary */
addDebugControl();
// Add alignment properties
InitAlignmentProperties(this);
return true;
}
bool ScopeSim::ISNewBLOB(const char *dev, const char *name, int sizes[], int blobsizes[], char *blobs[],
char *formats[], char *names[], int n)
{
if (dev != nullptr && strcmp(dev, getDeviceName()) == 0)
{
// Process alignment properties
ProcessAlignmentBLOBProperties(this, name, sizes, blobsizes, blobs, formats, names, n);
}
// Pass it up the chain
return INDI::Telescope::ISNewBLOB(dev, name, sizes, blobsizes, blobs, formats, names, n);
}
bool ScopeSim::ISNewNumber(const char *dev, const char *name, double values[], char *names[], int n)
{
// first check if it's for our device
if (dev != nullptr && strcmp(dev, getDeviceName()) == 0)
{
// Process alignment properties
ProcessAlignmentNumberProperties(this, name, values, names, n);
}
// if we didn't process it, continue up the chain, let somebody else
// give it a shot
return INDI::Telescope::ISNewNumber(dev, name, values, names, n);
}
bool ScopeSim::ISNewSwitch(const char *dev, const char *name, ISState *states, char *names[], int n)
{
if (dev != nullptr && strcmp(dev, getDeviceName()) == 0)
{
// Process alignment properties
ProcessAlignmentSwitchProperties(this, name, states, names, n);
}
// Nobody has claimed this, so, ignore it
return INDI::Telescope::ISNewSwitch(dev, name, states, names, n);
}
bool ScopeSim::ISNewText(const char *dev, const char *name, char *texts[], char *names[], int n)
{
if (dev != nullptr && strcmp(dev, getDeviceName()) == 0)
{
// Process alignment properties
ProcessAlignmentTextProperties(this, name, texts, names, n);
}
// Pass it up the chain
return INDI::Telescope::ISNewText(dev, name, texts, names, n);
}
bool ScopeSim::MoveNS(INDI_DIR_NS dir, TelescopeMotionCommand command)
{
AxisDirection axisDir = (dir == DIRECTION_NORTH) ? FORWARD : REVERSE;
AxisStatus axisStat = (command == MOTION_START) ? SLEWING : STOPPED;
AxisSlewRateDEC = DEFAULT_SLEW_RATE;
AxisDirectionDEC = axisDir;
AxisStatusDEC = axisStat;
return true;
}
bool ScopeSim::MoveWE(INDI_DIR_WE dir, TelescopeMotionCommand command)
{
AxisDirection axisDir = (dir == DIRECTION_WEST) ? FORWARD : REVERSE;
AxisStatus axisStat = (command == MOTION_START) ? SLEWING : STOPPED;
AxisSlewRateRA = DEFAULT_SLEW_RATE;
AxisDirectionRA = axisDir;
AxisStatusRA = axisStat;
return true;
}
bool ScopeSim::ReadScopeStatus()
{
INDI::IHorizontalCoordinates AltAz { CurrentEncoderMicrostepsRA / MICROSTEPS_PER_DEGREE, CurrentEncoderMicrostepsDEC / MICROSTEPS_PER_DEGREE };
TelescopeDirectionVector TDV = TelescopeDirectionVectorFromAltitudeAzimuth(AltAz);
double RightAscension, Declination;
if (!TransformTelescopeToCelestial(TDV, RightAscension, Declination))
{
if (TraceThisTick)
DEBUG(DBG_SIMULATOR, "ReadScopeStatus - TransformTelescopeToCelestial failed");
TelescopeDirectionVector RotatedTDV(TDV);
switch (GetApproximateMountAlignment())
{
case ZENITH:
if (TraceThisTick)
DEBUG(DBG_SIMULATOR, "ReadScopeStatus - ApproximateMountAlignment ZENITH");
break;
case NORTH_CELESTIAL_POLE:
if (TraceThisTick)
DEBUG(DBG_SIMULATOR, "ReadScopeStatus - ApproximateMountAlignment NORTH_CELESTIAL_POLE");
// Rotate the TDV coordinate system anticlockwise (positive) around the y axis by 90 minus
// the (positive)observatory latitude. The vector itself is rotated clockwise
RotatedTDV.RotateAroundY(90.0 - m_Location.latitude);
AltitudeAzimuthFromTelescopeDirectionVector(RotatedTDV, AltAz);
break;
case SOUTH_CELESTIAL_POLE:
if (TraceThisTick)
DEBUG(DBG_SIMULATOR, "ReadScopeStatus - ApproximateMountAlignment SOUTH_CELESTIAL_POLE");
// Rotate the TDV coordinate system clockwise (negative) around the y axis by 90 plus
// the (negative)observatory latitude. The vector itself is rotated anticlockwise
RotatedTDV.RotateAroundY(-90.0 - m_Location.latitude);
AltitudeAzimuthFromTelescopeDirectionVector(RotatedTDV, AltAz);
break;
}
INDI::IEquatorialCoordinates EquatorialCoordinates;
INDI::HorizontalToEquatorial(&AltAz, &m_Location, ln_get_julian_from_sys(), &EquatorialCoordinates);
// libnova works in decimal degrees
RightAscension = EquatorialCoordinates.rightascension;
Declination = EquatorialCoordinates.declination;
}
if (TraceThisTick)
DEBUGF(DBG_SIMULATOR, "ReadScopeStatus - RA %lf hours DEC %lf degrees", RightAscension, Declination);
NewRaDec(RightAscension, Declination);
return true;
}
bool ScopeSim::Sync(double ra, double dec)
{
INDI::IHorizontalCoordinates AltAz { 0, 0 };
AlignmentDatabaseEntry NewEntry;
AltAz.altitude = double(CurrentEncoderMicrostepsDEC) / MICROSTEPS_PER_DEGREE;
AltAz.azimuth = double(CurrentEncoderMicrostepsRA) / MICROSTEPS_PER_DEGREE;
NewEntry.ObservationJulianDate = ln_get_julian_from_sys();
NewEntry.RightAscension = ra;
NewEntry.Declination = dec;
NewEntry.TelescopeDirection = TelescopeDirectionVectorFromAltitudeAzimuth(AltAz);
NewEntry.PrivateDataSize = 0;
if (!CheckForDuplicateSyncPoint(NewEntry))
{
GetAlignmentDatabase().push_back(NewEntry);
// Tell the client about size change
UpdateSize();
// Tell the math plugin to reinitialise
Initialise(this);
return true;
}
return false;
}
void ScopeSim::TimerHit()
{
TraceThisTickCount++;
if (60 == TraceThisTickCount)
{
TraceThisTick = true;
TraceThisTickCount = 0;
}
// Simulate mount movement
static struct timeval ltv
{
0, 0
}; // previous system time
struct timeval tv
{
0, 0
}; // new system time
double dt; // Elapsed time in seconds since last tick
gettimeofday(&tv, nullptr);
if (ltv.tv_sec == 0 && ltv.tv_usec == 0)
ltv = tv;
dt = tv.tv_sec - ltv.tv_sec + (tv.tv_usec - ltv.tv_usec) / 1e6;
ltv = tv;
// RA axis
long SlewSteps = dt * AxisSlewRateRA;
bool CompleteRevolution = SlewSteps >= MICROSTEPS_PER_REVOLUTION;
SlewSteps = SlewSteps % MICROSTEPS_PER_REVOLUTION; // Just in case ;-)
switch (AxisStatusRA)
{
case STOPPED:
// Do nothing
break;
case SLEWING:
{
DEBUGF(DBG_SIMULATOR,
"TimerHit Slewing - RA Current Encoder %ld SlewSteps %ld Direction %d Target %ld Status %d",
CurrentEncoderMicrostepsRA, SlewSteps, AxisDirectionRA, GotoTargetMicrostepsRA, AxisStatusRA);
// Update the encoder
if (FORWARD == AxisDirectionRA)
CurrentEncoderMicrostepsRA += SlewSteps;
else
CurrentEncoderMicrostepsRA -= SlewSteps;
if (CurrentEncoderMicrostepsRA < 0)
CurrentEncoderMicrostepsRA += MICROSTEPS_PER_REVOLUTION;
else if (CurrentEncoderMicrostepsRA >= MICROSTEPS_PER_REVOLUTION)
CurrentEncoderMicrostepsRA -= MICROSTEPS_PER_REVOLUTION;
DEBUGF(DBG_SIMULATOR, "TimerHit Slewing - RA New Encoder %d New Status %d", CurrentEncoderMicrostepsRA,
AxisStatusRA);
break;
}
case SLEWING_TO:
{
DEBUGF(DBG_SIMULATOR,
"TimerHit SlewingTo - RA Current Encoder %ld SlewSteps %ld Direction %d Target %ld Status %d",
CurrentEncoderMicrostepsRA, SlewSteps, AxisDirectionRA, GotoTargetMicrostepsRA, AxisStatusRA);
long OldEncoder = CurrentEncoderMicrostepsRA;
// Update the encoder
if (FORWARD == AxisDirectionRA)
CurrentEncoderMicrostepsRA += SlewSteps;
else
CurrentEncoderMicrostepsRA -= SlewSteps;
if (CurrentEncoderMicrostepsRA < 0)
CurrentEncoderMicrostepsRA += MICROSTEPS_PER_REVOLUTION;
else if (CurrentEncoderMicrostepsRA >= MICROSTEPS_PER_REVOLUTION)
CurrentEncoderMicrostepsRA -= MICROSTEPS_PER_REVOLUTION;
if (CompleteRevolution)
{
// Must have found the target
AxisStatusRA = STOPPED;
CurrentEncoderMicrostepsRA = GotoTargetMicrostepsRA;
}
else
{
bool FoundTarget = false;
if (FORWARD == AxisDirectionRA)
{
if (CurrentEncoderMicrostepsRA < OldEncoder)
{
// Two ranges to search
if ((GotoTargetMicrostepsRA >= OldEncoder) &&
(GotoTargetMicrostepsRA <= MICROSTEPS_PER_REVOLUTION))
FoundTarget = true;
else if ((GotoTargetMicrostepsRA >= 0) &&
(GotoTargetMicrostepsRA <= CurrentEncoderMicrostepsRA))
FoundTarget = true;
}
else if ((GotoTargetMicrostepsRA >= OldEncoder) &&
(GotoTargetMicrostepsRA <= CurrentEncoderMicrostepsRA))
FoundTarget = true;
}
else
{
if (CurrentEncoderMicrostepsRA > OldEncoder)
{
// Two ranges to search
if ((GotoTargetMicrostepsRA >= 0) && (GotoTargetMicrostepsRA <= OldEncoder))
FoundTarget = true;
else if ((GotoTargetMicrostepsRA >= CurrentEncoderMicrostepsRA) &&
(GotoTargetMicrostepsRA <= MICROSTEPS_PER_REVOLUTION))
FoundTarget = true;
}
else if ((GotoTargetMicrostepsRA >= CurrentEncoderMicrostepsRA) &&
(GotoTargetMicrostepsRA <= OldEncoder))
FoundTarget = true;
}
if (FoundTarget)
{
AxisStatusRA = STOPPED;
CurrentEncoderMicrostepsRA = GotoTargetMicrostepsRA;
}
}
DEBUGF(DBG_SIMULATOR, "TimerHit SlewingTo - RA New Encoder %d New Status %d", CurrentEncoderMicrostepsRA,
AxisStatusRA);
break;
}
}
// DEC axis
SlewSteps = dt * AxisSlewRateDEC;
switch (AxisStatusDEC)
{
case STOPPED:
// Do nothing
break;
case SLEWING:
{
DEBUGF(DBG_SIMULATOR,
"TimerHit Slewing - DEC Current Encoder %ld SlewSteps %d Direction %ld Target %ld Status %d",
CurrentEncoderMicrostepsDEC, SlewSteps, AxisDirectionDEC, GotoTargetMicrostepsDEC, AxisStatusDEC);
// Update the encoder
SlewSteps = SlewSteps % MICROSTEPS_PER_REVOLUTION; // Just in case ;-)
if (FORWARD == AxisDirectionDEC)
CurrentEncoderMicrostepsDEC += SlewSteps;
else
CurrentEncoderMicrostepsDEC -= SlewSteps;
if (CurrentEncoderMicrostepsDEC > MAX_DEC)
{
CurrentEncoderMicrostepsDEC = MAX_DEC;
AxisStatusDEC = STOPPED; // Hit the buffers
DEBUG(DBG_SIMULATOR, "TimerHit - DEC axis hit the buffers at MAX_DEC");
}
else if (CurrentEncoderMicrostepsDEC < MIN_DEC)
{
CurrentEncoderMicrostepsDEC = MIN_DEC;
AxisStatusDEC = STOPPED; // Hit the buffers
DEBUG(DBG_SIMULATOR, "TimerHit - DEC axis hit the buffers at MIN_DEC");
}
DEBUGF(DBG_SIMULATOR, "TimerHit Slewing - DEC New Encoder %d New Status %d", CurrentEncoderMicrostepsDEC,
AxisStatusDEC);
break;
}
case SLEWING_TO:
{
DEBUGF(DBG_SIMULATOR,
"TimerHit SlewingTo - DEC Current Encoder %ld SlewSteps %d Direction %ld Target %ld Status %d",
CurrentEncoderMicrostepsDEC, SlewSteps, AxisDirectionDEC, GotoTargetMicrostepsDEC, AxisStatusDEC);
// Calculate steps to target
int StepsToTarget;
if (FORWARD == AxisDirectionDEC)
{
if (CurrentEncoderMicrostepsDEC <= GotoTargetMicrostepsDEC)
StepsToTarget = GotoTargetMicrostepsDEC - CurrentEncoderMicrostepsDEC;
else
StepsToTarget = CurrentEncoderMicrostepsDEC - GotoTargetMicrostepsDEC;
}
else
{
// Axis in reverse
if (CurrentEncoderMicrostepsDEC >= GotoTargetMicrostepsDEC)
StepsToTarget = CurrentEncoderMicrostepsDEC - GotoTargetMicrostepsDEC;
else
StepsToTarget = GotoTargetMicrostepsDEC - CurrentEncoderMicrostepsDEC;
}
if (StepsToTarget <= SlewSteps)
{
// Target was hit this tick
AxisStatusDEC = STOPPED;
CurrentEncoderMicrostepsDEC = GotoTargetMicrostepsDEC;
}
else
{
if (FORWARD == AxisDirectionDEC)
CurrentEncoderMicrostepsDEC += SlewSteps;
else
CurrentEncoderMicrostepsDEC -= SlewSteps;
if (CurrentEncoderMicrostepsDEC < 0)
CurrentEncoderMicrostepsDEC += MICROSTEPS_PER_REVOLUTION;
else if (CurrentEncoderMicrostepsDEC >= MICROSTEPS_PER_REVOLUTION)
CurrentEncoderMicrostepsDEC -= MICROSTEPS_PER_REVOLUTION;
}
DEBUGF(DBG_SIMULATOR, "TimerHit SlewingTo - DEC New Encoder %d New Status %d", CurrentEncoderMicrostepsDEC,
AxisStatusDEC);
break;
}
}
INDI::Telescope::TimerHit(); // This will call ReadScopeStatus
// OK I have updated the celestial reference frame RA/DEC in ReadScopeStatus
// Now handle the tracking state
switch (TrackState)
{
case SCOPE_SLEWING:
if ((STOPPED == AxisStatusRA) && (STOPPED == AxisStatusDEC))
{
if (ISS_ON == IUFindSwitch(&CoordSP, "TRACK")->s)
{
// Goto has finished start tracking
DEBUG(DBG_SIMULATOR, "TimerHit - Goto finished start tracking");
TrackState = SCOPE_TRACKING;
// Fall through to tracking case
}
else
{
TrackState = SCOPE_IDLE;
break;
}
}
else
break;
case SCOPE_TRACKING:
{
// Continue or start tracking
// Calculate where the mount needs to be in POLLMS time
// POLLMS is hardcoded to be one second
// TODO may need to make this longer to get a meaningful result
double JulianOffset = 1.0 / (24.0 * 60 * 60);
TelescopeDirectionVector TDV;
INDI::IHorizontalCoordinates AltAz { 0, 0 };
if (TransformCelestialToTelescope(CurrentTrackingTarget.rightascension, CurrentTrackingTarget.declination, JulianOffset,
TDV))
AltitudeAzimuthFromTelescopeDirectionVector(TDV, AltAz);
else
{
INDI::IEquatorialCoordinates EquatorialCoordinates { 0, 0 };
EquatorialCoordinates.rightascension = CurrentTrackingTarget.rightascension;
EquatorialCoordinates.declination = CurrentTrackingTarget.declination;
INDI::EquatorialToHorizontal(&EquatorialCoordinates, &m_Location, ln_get_julian_from_sys() + JulianOffset, &AltAz);
INDI::EquatorialToHorizontal(&EquatorialCoordinates, &m_Location, ln_get_julian_from_sys() + JulianOffset,
&AltAz);
}
// My altitude encoder runs -90 to +90
if ((AltAz.altitude > 90.0) || (AltAz.altitude < -90.0))
{
DEBUG(DBG_SIMULATOR, "TimerHit tracking - Altitude out of range");
// This should not happen
return;
}
// My polar encoder runs 0 to +360
if ((AltAz.azimuth > 360.0) || (AltAz.azimuth < -360.0))
{
DEBUG(DBG_SIMULATOR, "TimerHit tracking - Azimuth out of range");
// This should not happen
return;
}
if (AltAz.azimuth < 0.0)
{
DEBUG(DBG_SIMULATOR, "TimerHit tracking - Azimuth negative");
AltAz.azimuth = 360.0 + AltAz.azimuth;
}
long AltitudeOffsetMicrosteps = int(AltAz.altitude * MICROSTEPS_PER_DEGREE - CurrentEncoderMicrostepsDEC);
long AzimuthOffsetMicrosteps = int(AltAz.azimuth * MICROSTEPS_PER_DEGREE - CurrentEncoderMicrostepsRA);
DEBUGF(DBG_SIMULATOR, "TimerHit - Tracking AltitudeOffsetMicrosteps %d AzimuthOffsetMicrosteps %d",
AltitudeOffsetMicrosteps, AzimuthOffsetMicrosteps);
if (0 != AzimuthOffsetMicrosteps)
{
// Calculate the slewing rates needed to reach that position
// at the correct time. This is simple as interval is one second
if (AzimuthOffsetMicrosteps > 0)
{
if (AzimuthOffsetMicrosteps < MICROSTEPS_PER_REVOLUTION / 2.0)
{
// Forward
AxisDirectionRA = FORWARD;
AxisSlewRateRA = AzimuthOffsetMicrosteps;
}
else
{
// Reverse
AxisDirectionRA = REVERSE;
AxisSlewRateRA = MICROSTEPS_PER_REVOLUTION - AzimuthOffsetMicrosteps;
}
}
else
{
AzimuthOffsetMicrosteps = std::abs(AzimuthOffsetMicrosteps);
if (AzimuthOffsetMicrosteps < MICROSTEPS_PER_REVOLUTION / 2.0)
{
// Forward
AxisDirectionRA = REVERSE;
AxisSlewRateRA = AzimuthOffsetMicrosteps;
}
else
{
// Reverse
AxisDirectionRA = FORWARD;
AxisSlewRateRA = MICROSTEPS_PER_REVOLUTION - AzimuthOffsetMicrosteps;
}
}
AxisSlewRateRA = std::abs(AzimuthOffsetMicrosteps);
AxisDirectionRA = AzimuthOffsetMicrosteps > 0 ? FORWARD : REVERSE; // !!!! BEWARE INERTIA FREE MOUNT
AxisStatusRA = SLEWING;
DEBUGF(DBG_SIMULATOR, "TimerHit - Tracking AxisSlewRateRA %lf AxisDirectionRA %d", AxisSlewRateRA,
AxisDirectionRA);
}
else
{
// Nothing to do - stop the axis
AxisStatusRA = STOPPED; // !!!! BEWARE INERTIA FREE MOUNT
DEBUG(DBG_SIMULATOR, "TimerHit - Tracking nothing to do stopping RA axis");
}
if (0 != AltitudeOffsetMicrosteps)
{
// Calculate the slewing rates needed to reach that position
// at the correct time.
AxisSlewRateDEC = std::abs(AltitudeOffsetMicrosteps);
AxisDirectionDEC = AltitudeOffsetMicrosteps > 0 ? FORWARD : REVERSE; // !!!! BEWARE INERTIA FREE MOUNT
AxisStatusDEC = SLEWING;
DEBUGF(DBG_SIMULATOR, "TimerHit - Tracking AxisSlewRateDEC %lf AxisDirectionDEC %d", AxisSlewRateDEC,
AxisDirectionDEC);
}
else
{
// Nothing to do - stop the axis
AxisStatusDEC = STOPPED; // !!!! BEWARE INERTIA FREE MOUNT
DEBUG(DBG_SIMULATOR, "TimerHit - Tracking nothing to do stopping DEC axis");
}
break;
}
default:
break;
}
TraceThisTick = false;
}
bool ScopeSim::updateLocation(double latitude, double longitude, double elevation)
{
UpdateLocation(latitude, longitude, elevation);
return true;
}
|