1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
|
/*******************************************************************************
Copyright(c) 2017 Jasem Mutlaq. All rights reserved.
Copyright(c) 2010 Gerry Rozema. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License version 2 as published by the Free Software Foundation.
.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*******************************************************************************/
/************************************************************************************
This simulator is useful for simulating the images sent to a guiding program such as the
Ekos guider or PHD2.
There are many adjustments to the image needing comments. An important one is:
Seeing: make this reasonably large so that single pixels stars aren't generated and the
guider can track sub-pixel. 5 is a good start.
Use the below INDI properties to simulate imperfections in real-world mounts.
RA drift: Simulates a drift in arcseconds/second of the RA angle, e.g. due to bad tracking
or refraction
DEC drift: Similar, useful to simulate polar alignment error, etc.
Periodic error period (secs):
Periodic error maxval (arcsecs): These add a sinusoid of the given period, going from
-maxval to maxval arcseconds onto the RA.
Max random RA add (arcsecs):
Max random DEC add (arcsecs): These add random RA or DEC offsets each frame to the RA or
dec values. The random values are linearly distributed between -value to + value.
Another interesting guide hardware simulation is found in the telescope simulator,
which can simulate backlash to the guiding pulses. See its Dec Backlash parameter.
************************************************************************************/
#include "guide_simulator.h"
#include "indicom.h"
#include "stream/streammanager.h"
#include "locale_compat.h"
#include <libnova/julian_day.h>
#include <libastro.h>
#include <cmath>
#include <unistd.h>
static pthread_cond_t cv = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t condMutex = PTHREAD_MUTEX_INITIALIZER;
constexpr double DEGREES_TO_RADIANS = 0.0174532925;
// We declare an auto pointer to GuideSim.
static std::unique_ptr<GuideSim> ccd(new GuideSim());
GuideSim::GuideSim()
{
m_CurrentRA = RA;
m_CurrentDEC = Dec;
m_StreamPredicate = 0;
m_TerminateThread = false;
}
bool GuideSim::SetupParms()
{
int nbuf;
SetCCDParams(SimulatorSettingsNP[SIM_XRES].getValue(), SimulatorSettingsNP[SIM_YRES].getValue(), 16,
SimulatorSettingsNP[SIM_XSIZE].getValue(),
SimulatorSettingsNP[SIM_YSIZE].getValue());
// Random number added to each pixel up to this value.
m_MaxNoise = SimulatorSettingsNP[SIM_NOISE].getValue();
// A "glow" added to all frames, stronger at the center and less so further from the center.
m_SkyGlow = SimulatorSettingsNP[SIM_SKYGLOW].getValue();
// Clipping ADU value. Nothing is allowed to get brighter.
m_MaxVal = SimulatorSettingsNP[SIM_MAXVAL].getValue();
// Fixed bias added to each pixel. Useful when negative and half of m_MaxNoise.
// This only gets added if m_MaxNoise is > 0.
m_Bias = SimulatorSettingsNP[SIM_BIAS].getValue();
// A saturation mag star saturates in one second
// and a limiting mag produces a one adu level in one second
m_LimitingMag = SimulatorSettingsNP[SIM_LIMITINGMAG].getValue();
m_SaturationMag = SimulatorSettingsNP[SIM_SATURATION].getValue();
// offset the dec (in minutes) by the guide head offset
m_OAGoffset = SimulatorSettingsNP[SIM_OAGOFFSET].getValue();
// Doesn't make much sense to me.
// The dec is offset by (m_PolarError * polarDrift * cos(dec)) / 3.81
// This (locally at least) is a constant offset to dec, so won't show
// up much in guiding error.
m_PolarError = SimulatorSettingsNP[SIM_POLAR].getValue();
m_PolarDrift = SimulatorSettingsNP[SIM_POLARDRIFT].getValue();
// Kwiq++
m_KingGamma = SimulatorSettingsNP[SIM_KING_GAMMA].getValue() * DEGREES_TO_RADIANS;
m_KingTheta = SimulatorSettingsNP[SIM_KING_THETA].getValue() * DEGREES_TO_RADIANS;
// Reduce the simulator "wait time" for exposures by this factor.
// That is, we can say exposure duration = 10s, and m_TimeFactor = 0.05
// and the system will simulate a 10s exposure, but it will only take 0.5 seconds.
m_TimeFactor = SimulatorSettingsNP[SIM_TIME_FACTOR].getValue();
// This is the rotation offset of the simulated camera respective to North.
// Because the simulated star field is calculated with their RA/DEC-coordinates
// (see DrawCcdFrame()) the origin angle of star field points north. So this value
// for EQ mounts normally simulate a certain camera offset and is a constant.
// For ALTAZ-mount this variable is altered consecutively by the value of the parallactic
// angle (transfered through a signal from KStars/skymapdrawabstract.cpp) and this way used
// to simulate the deviation of the camera orientation from N.
m_RotationOffset = SimulatorSettingsNP[SIM_ROTATION].getValue();
m_Seeing = SimulatorSettingsNP[SIM_SEEING].getValue();
m_RaTimeDrift = SimulatorSettingsNP[SIM_RA_DRIFT].getValue();
m_DecTimeDrift = SimulatorSettingsNP[SIM_DEC_DRIFT].getValue();
m_RaRand = SimulatorSettingsNP[SIM_RA_RAND].getValue();
m_DecRand = SimulatorSettingsNP[SIM_DEC_RAND].getValue();
m_PEPeriod = SimulatorSettingsNP[SIM_PE_PERIOD].getValue();
m_PEMax = SimulatorSettingsNP[SIM_PE_MAX].getValue();
m_TemperatureRequest = SimulatorSettingsNP[SIM_TEMPERATURE].getValue();
TemperatureNP[0].setValue(m_TemperatureRequest);
nbuf = PrimaryCCD.getXRes() * PrimaryCCD.getYRes() * PrimaryCCD.getBPP() / 8;
//nbuf += 512;
PrimaryCCD.setFrameBufferSize(nbuf);
Streamer->setPixelFormat(INDI_MONO, 16);
Streamer->setSize(PrimaryCCD.getXRes(), PrimaryCCD.getYRes());
return true;
}
bool GuideSim::Connect()
{
m_StreamPredicate = 0;
m_TerminateThread = false;
pthread_create(&m_PrimaryThread, nullptr, &streamVideoHelper, this);
SetTimer(getCurrentPollingPeriod());
return true;
}
bool GuideSim::Disconnect()
{
pthread_mutex_lock(&condMutex);
m_StreamPredicate = 1;
m_TerminateThread = true;
pthread_cond_signal(&cv);
pthread_mutex_unlock(&condMutex);
return true;
}
const char * GuideSim::getDefaultName()
{
return "Guide Simulator";
}
bool GuideSim::initProperties()
{
// Most hardware layers wont actually have indi properties defined
// but the simulators are a special case
INDI::CCD::initProperties();
CaptureFormat format = {"INDI_MONO", "Mono", 16, true};
addCaptureFormat(format);
SimulatorSettingsNP[SIM_XRES].fill("SIM_XRES", "CCD X resolution", "%4.0f", 0, 8192, 0, 1280);
SimulatorSettingsNP[SIM_YRES].fill("SIM_YRES", "CCD Y resolution", "%4.0f", 0, 8192, 0, 1024);
SimulatorSettingsNP[SIM_XSIZE].fill("SIM_XSIZE", "CCD X Pixel Size", "%4.2f", 0, 60, 0, 2.4);
SimulatorSettingsNP[SIM_YSIZE].fill("SIM_YSIZE", "CCD Y Pixel Size", "%4.2f", 0, 60, 0, 2.4);
SimulatorSettingsNP[SIM_MAXVAL].fill("SIM_MAXVAL", "CCD Maximum ADU", "%4.0f", 0, 65000, 0, 65000);
SimulatorSettingsNP[SIM_BIAS].fill("SIM_BIAS", "CCD Bias", "%4.0f", 0, 6000, 0, 10);
SimulatorSettingsNP[SIM_SATURATION].fill("SIM_SATURATION", "Saturation Mag", "%4.1f", 0, 20, 0, 1.0);
SimulatorSettingsNP[SIM_LIMITINGMAG].fill("SIM_LIMITINGMAG", "Limiting Mag", "%4.1f", 0, 20, 0, 17.0);
SimulatorSettingsNP[SIM_NOISE].fill("SIM_NOISE", "CCD Noise", "%4.0f", 0, 6000, 0, 10);
SimulatorSettingsNP[SIM_SKYGLOW].fill("SIM_SKYGLOW", "Sky Glow (magnitudes)", "%4.1f", 0, 6000, 0, 19.5);
SimulatorSettingsNP[SIM_OAGOFFSET].fill("SIM_OAGOFFSET", "Oag Offset (arcminutes)", "%4.1f", 0, 6000, 0, 0);
SimulatorSettingsNP[SIM_POLAR].fill("SIM_POLAR", "PAE (arcminutes)", "%4.3f", -600, 600, 0,
0); /* PAE = Polar Alignment Error */
SimulatorSettingsNP[SIM_POLARDRIFT].fill("SIM_POLARDRIFT", "PAE Drift (minutes)", "%4.3f", 0, 6000, 0, 0);
SimulatorSettingsNP[SIM_ROTATION].fill("SIM_ROTATION", "Rotation Offset", "%4.1f", -360, 360, 0, 0);
SimulatorSettingsNP[SIM_KING_GAMMA].fill("SIM_KING_GAMMA", "(CP,TCP), deg", "%4.1f", 0, 10, 0, 0);
SimulatorSettingsNP[SIM_KING_THETA].fill("SIM_KING_THETA", "hour hangle, deg", "%4.1f", 0, 360, 0, 0);
SimulatorSettingsNP[SIM_TIME_FACTOR].fill("SIM_TIME_FACTOR", "Time Factor (x)", "%.2f", 0.01, 100, 0, 1);
SimulatorSettingsNP[SIM_SEEING].fill("SIM_SEEING", "Seeing (a-s)", "%4.1f", 0, 20, 0, 6);
SimulatorSettingsNP[SIM_RA_DRIFT].fill("SIM_RA_DRIFT", "RA drift (a-s/second)", "%5.3f", -2, 2, 0, 0.05);
SimulatorSettingsNP[SIM_DEC_DRIFT].fill("SIM_DEC_DRIFT", "DEC drift (a-s/second)", "%5.3f", -2, 2, 0, -0.05);
SimulatorSettingsNP[SIM_RA_RAND].fill("SIM_RA_RAND", "Max random RA add (a-s)", "%5.3f", -2, 2, 0, 0.2);
SimulatorSettingsNP[SIM_DEC_RAND].fill("SIM_DEC_RAND", "Max random DEC add (a-s)", "%5.3f", -2, 2, 0,
0.3);
SimulatorSettingsNP[SIM_PE_PERIOD].fill("SIM_PE_PERIOD", "Periodic error period (secs)", "%4.1f", 0, 1000, 0, 120);
SimulatorSettingsNP[SIM_PE_MAX].fill("SIM_PE_MAX", "Periodic error maxval (a-s)", "%4.1f", 0, 100, 0, 3);
SimulatorSettingsNP[SIM_TEMPERATURE].fill("SIM_TEMPERATURE", "Temperature (°C)", "%4.1f", -100, 100, 0, 25);
SimulatorSettingsNP.fill(getDeviceName(), "SIMULATOR_SETTINGS",
"Config", SIMULATOR_TAB, IP_RW, 60, IPS_IDLE);
// load() is important to fill all editfields with saved values also, so ISNewNumber() of one field
// doesn't update the other fields of the group with the "old" contents.
SimulatorSettingsNP.load();
// RGB Simulation
SimulateRgbSP[SIMULATE_YES].fill("SIMULATE_YES", "Yes", ISS_OFF);
SimulateRgbSP[SIMULATE_NO].fill("SIMULATE_NO", "No", ISS_ON);
SimulateRgbSP.fill(getDeviceName(), "SIMULATE_RGB", "Simulate RGB",
SIMULATOR_TAB, IP_RW, ISR_1OFMANY, 60, IPS_IDLE);
// CCD Gain
GainNP[0].fill("GAIN", "Gain", "%.f", 0, 100, 10, 50);
GainNP.fill(getDeviceName(), "CCD_GAIN", "Gain", MAIN_CONTROL_TAB, IP_RW, 60, IPS_IDLE);
EqPENP[RA_PE].fill("RA_PE", "RA (hh:mm:ss)", "%010.6m", 0, 24, 0, 0);
EqPENP[DEC_PE].fill("DEC_PE", "DEC (dd:mm:ss)", "%010.6m", -90, 90, 0, 0);
EqPENP.fill(getDeviceName(), "EQUATORIAL_PE", "EQ PE", SIMULATOR_TAB, IP_RW, 60,
IPS_IDLE);
// Timeout
ToggleTimeoutSP[INDI_ENABLED].fill("INDI_ENABLED", "Enabled", ISS_OFF);
ToggleTimeoutSP[INDI_DISABLED].fill("INDI_DISABLED", "Disabled", ISS_ON);
ToggleTimeoutSP.fill(getDeviceName(), "CCD_TIMEOUT", "Timeout", SIMULATOR_TAB, IP_RW, ISR_1OFMANY, 60, IPS_IDLE);
#ifdef USE_EQUATORIAL_PE
IDSnoopDevice(ActiveDeviceTP[0].getText(), "EQUATORIAL_PE");
#else
IDSnoopDevice(ActiveDeviceTP[ACTIVE_TELESCOPE].getText(), "EQUATORIAL_EOD_COORD");
#endif
TemperatureNP.setPermission(IP_RO);
TemperatureNP[0].setValue(25);
uint32_t cap = 0;
cap |= CCD_CAN_ABORT;
cap |= CCD_CAN_BIN;
cap |= CCD_CAN_SUBFRAME;
cap |= CCD_HAS_SHUTTER;
cap |= CCD_HAS_ST4_PORT;
cap |= CCD_HAS_STREAMING;
SetCCDCapability(cap);
// This should be called after the initial SetCCDCapability (above)
// as it modifies the capabilities.
setRGB(m_SimulateRGB);
addDebugControl();
setDriverInterface(getDriverInterface());
return true;
}
void GuideSim::setRGB(bool onOff)
{
if (onOff)
{
SetCCDCapability(GetCCDCapability() | CCD_HAS_BAYER);
BayerTP[CFA_OFFSET_X].setText("0");
BayerTP[CFA_OFFSET_Y].setText("0");
BayerTP[CFA_TYPE].setText("RGGB");
}
else
{
SetCCDCapability(GetCCDCapability() & ~CCD_HAS_BAYER);
}
}
void GuideSim::ISGetProperties(const char * dev)
{
INDI::CCD::ISGetProperties(dev);
defineProperty(SimulatorSettingsNP);
defineProperty(EqPENP);
defineProperty(SimulateRgbSP);
defineProperty(ToggleTimeoutSP);
}
bool GuideSim::updateProperties()
{
INDI::CCD::updateProperties();
if (isConnected())
{
defineProperty(TemperatureNP);
defineProperty(GainNP);
SetupParms();
if (HasGuideHead())
{
SetGuiderParams(500, 290, 16, 9.8, 12.6);
GuideCCD.setFrameBufferSize(GuideCCD.getXRes() * GuideCCD.getYRes() * 2);
}
}
else
{
deleteProperty(TemperatureNP);
deleteProperty(GainNP);
}
return true;
}
bool GuideSim::StartExposure(float duration)
{
// for the simulator, we can just draw the frame now
// and it will get returned at the right time
// by the timer routines
m_AbortPrimaryFrame = false;
m_ExposureRequest = duration;
PrimaryCCD.setExposureDuration(duration);
gettimeofday(&m_ExpStart, nullptr);
// Leave the proper time showing for the draw routines
DrawCcdFrame(&PrimaryCCD);
// Now compress the actual wait time
m_ExposureRequest = duration * m_TimeFactor;
InExposure = true;
return true;
}
bool GuideSim::AbortExposure()
{
if (!InExposure)
return true;
m_AbortPrimaryFrame = true;
return true;
}
float GuideSim::CalcTimeLeft(timeval start, float req)
{
double timesince;
double timeleft;
struct timeval now
{
0, 0
};
gettimeofday(&now, nullptr);
timesince =
(double)(now.tv_sec * 1000.0 + now.tv_usec / 1000) - (double)(start.tv_sec * 1000.0 + start.tv_usec / 1000);
timesince = timesince / 1000;
timeleft = req - timesince;
return timeleft;
}
void GuideSim::TimerHit()
{
uint32_t nextTimer = getCurrentPollingPeriod();
// No need to reset timer if we are not connected anymore
if (!isConnected())
return;
if (InExposure && ToggleTimeoutSP.findOnSwitchIndex() == INDI_DISABLED)
{
if (m_AbortPrimaryFrame)
{
InExposure = false;
m_AbortPrimaryFrame = false;
}
else
{
float timeleft;
timeleft = CalcTimeLeft(m_ExpStart, m_ExposureRequest);
//IDLog("CCD Exposure left: %g - Request: %g\n", timeleft, m_ExposureRequest);
if (timeleft < 0)
timeleft = 0;
PrimaryCCD.setExposureLeft(timeleft);
if (timeleft < 1.0)
{
if (timeleft <= 0.001)
{
InExposure = false;
PrimaryCCD.binFrame();
ExposureComplete(&PrimaryCCD);
}
else
{
// set a shorter timer
nextTimer = timeleft * 1000;
}
}
}
}
SetTimer(nextTimer);
}
int GuideSim::DrawCcdFrame(INDI::CCDChip * targetChip)
{
// CCD frame is 16 bit data
double exposure_time;
uint16_t * ptr = reinterpret_cast<uint16_t *>(targetChip->getFrameBuffer());
if (Streamer->isStreaming())
exposure_time = (m_ExposureRequest < 1) ? (m_ExposureRequest * 100) : m_ExposureRequest * 2;
else
exposure_time = m_ExposureRequest;
exposure_time *= (1 + sqrt(GainNP[0].getValue()));
auto targetFocalLength = ScopeInfoNP[FOCAL_LENGTH].getValue() > 0 ? ScopeInfoNP[FOCAL_LENGTH].getValue() :
snoopedFocalLength;
if (m_ShowStarField)
{
double PEOffset = 0;
double rad; // telescope ra in degrees
double rar; // telescope ra in radians
double decr; // telescope dec in radians;
int nwidth = 0, nheight = 0;
time_t now;
time(&now);
if (!m_RunStartInitialized || difftime(now, m_LastSim) > 30)
{
// Start the clock when the first image is produced or if we haven't sim'd in a while.
m_RunStartInitialized = true;
time(&m_RunStart);
}
m_LastSim = now;
// Lets figure out where we are on the pe curve
const double timesince = difftime(now, m_RunStart);
// This is our spot in the periodic error curve
if (m_PEPeriod != 0 && m_PEMax != 0)
{
const double PESpot = 2.0 * 3.14159 * timesince / m_PEPeriod;
PEOffset = m_PEMax * std::sin(PESpot) / 3600.0; // convert to degrees
}
// Spin up a set of plate constants that will relate
// ra/dec of stars, to our fictitious ccd layout
// to account for various rotations etc
// we should spin up some plate constants here
// then we can use these constants to rotate and offset
// the standard co-ordinates on each star for drawing
// a ccd frame;
double pa, pb, pc, pd, pe, pf;
// Pixels per radian
double pprx, ppry;
// Scale in arcsecs per pixel
double Scalex;
double Scaley;
// CCD width in pixels
double ccdW = targetChip->getXRes();
// Pixels per radian
pprx = targetFocalLength / targetChip->getPixelSizeX() * 1000;
ppry = targetFocalLength / targetChip->getPixelSizeY() * 1000;
// we do a simple scale for x and y locations
// based on the focal length and pixel size
// focal length in mm, pixels in microns
// JM: 2015-03-17: Using a simpler formula, Scalex and Scaley are in arcsecs/pixel
Scalex = (targetChip->getPixelSizeX() / targetFocalLength) * 206.3;
Scaley = (targetChip->getPixelSizeY() / targetFocalLength) * 206.3;
#if 0
DEBUGF(
INDI::Logger::DBG_DEBUG,
"pprx: %g pixels per radian ppry: %g pixels per radian ScaleX: %g arcsecs/pixel ScaleY: %g arcsecs/pixel",
pprx, ppry, Scalex, Scaley);
#endif
m_RotationOffset = SimulatorSettingsNP[SIM_ROTATION].getValue();
double theta = m_RotationOffset;
if (!std::isnan(RotatorAngle))
theta += RotatorAngle;
if (pierSide == 1)
theta -= 180; // rotate 180 if on East
theta = range360(theta);
LOGF_DEBUG("Rotator Angle: %f, Camera Rotation: %f", RotatorAngle, theta);
// JM: 2015-03-17: Next we do a rotation assuming CW for angle theta
// TS: 2025-06-09: Below we have "Invert horizontally" and in the end
// this produces a rotation CCW with origin N (TODO: adjust matrix?)
pa = pprx * cos(theta * M_PI / 180.0);
pb = ppry * sin(theta * M_PI / 180.0);
pd = pprx * -sin(theta * M_PI / 180.0);
pe = ppry * cos(theta * M_PI / 180.0);
nwidth = targetChip->getXRes();
pc = nwidth / 2;
nheight = targetChip->getYRes();
pf = nheight / 2;
m_ImageScaleX = Scalex;
m_ImageScaleY = Scaley;
#ifdef USE_EQUATORIAL_PE
if (!m_UsePE)
{
#endif
m_CurrentRA = RA;
m_CurrentDEC = Dec;
if (std::isnan(m_CurrentRA))
{
m_CurrentRA = 0;
m_CurrentDEC = 0;
}
INDI::IEquatorialCoordinates epochPos { m_CurrentRA, m_CurrentDEC }, J2000Pos { 0, 0 };
// Convert from JNow to J2000
INDI::ObservedToJ2000(&epochPos, ln_get_julian_from_sys(), &J2000Pos);
m_CurrentRA = J2000Pos.rightascension;
m_CurrentDEC = J2000Pos.declination;
m_CurrentDEC += m_GuideNSOffset;
m_CurrentRA += m_GuideWEOffset;
#ifdef USE_EQUATORIAL_PE
}
#endif
// Linear drift, number of seconds multiplied by drift/sec in arcsec.
const float raTDrift = timesince * m_RaTimeDrift / 3600.0;
const float decTDrift = timesince * m_DecTimeDrift / 3600.0;
// Random offsets for RA and DEC. The random drifts will be small, so multiply by
// scale as random() produces an integer. Drifts are in degrees.
double raRandomDrift = 0;
double decRandomDrift = 0;
constexpr int scale = 1000000;
if (m_RaRand > 0)
{
const int raScale = scale * m_RaRand;
raRandomDrift = ((random() % (2 * raScale)) - raScale) / (3600.0 * scale);
}
if (m_DecRand > 0)
{
const int decScale = scale * m_DecRand;
decRandomDrift = ((random() % (2 * decScale)) - decScale) / (3600.0 * scale);
}
// calc this now, we will use it a lot later
rad = m_CurrentRA * 15.0 + PEOffset + raTDrift + raRandomDrift;
rar = rad * DEGREES_TO_RADIANS;
// offsetting the dec by the guide head offset
float cameradec = m_CurrentDEC + m_OAGoffset / 60;
decr = cameradec * DEGREES_TO_RADIANS;
const double decDrift = (m_PolarDrift * m_PolarError * cos(decr)) / 3.81;
// Add declination drift, if any.
decr += (decRandomDrift + decTDrift + decDrift / 3600.0) * DEGREES_TO_RADIANS;
// Calculate the radius we need to fetch
float radius = sqrt((Scalex * Scalex * targetChip->getXRes() / 2.0 * targetChip->getXRes() / 2.0) +
(Scaley * Scaley * targetChip->getYRes() / 2.0 * targetChip->getYRes() / 2.0));
// we have radius in arcseconds now
radius = radius / 60; // convert to arcminutes
#if 0
LOGF_DEBUG("Lookup radius %4.2f", radius);
#endif
// A m_SaturationMag star saturates in one second
// and a limitingmag produces a one adu level in one second
// solve for zero point and system gain
double zeroPointK = (m_SaturationMag - m_LimitingMag) / ((-2.5 * log(m_MaxVal)) - (-2.5 * log(1.0 / 2.0)));
double zeroPointZ = m_SaturationMag - zeroPointK * (-2.5 * log(m_MaxVal));
//zeroPointZ = zeroPointZ + m_SaturationMag;
//IDLog("K=%4.2f Z=%4.2f\n",zeroPointK,zeroPointZ);
// Should probably do some math here to figure out the dimmest
// star we can see on this exposure
// and only fetch to that magnitude
// for now, just use the limiting mag number with some room to spare
float lookuplimit = m_LimitingMag;
if (radius > 60)
lookuplimit = 11;
if (m_KingGamma > 0.)
{
// wildi, make sure there are always stars, e.g. in case where m_KingGamma is set to 1 degree.
// Otherwise the solver will fail.
radius = 60.;
// wildi, transform to telescope coordinate system, differential form
// see E.S. King based on Chauvenet:
// https://ui.adsabs.harvard.edu/link_gateway/1902AnHar..41..153K/ADS_PDF
// Currently it is not possible to enable the logging in simulator devices (tested with ccd and telescope)
// Replace LOGF_DEBUG by IDLog
//IDLog("++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", m_KingGamma); // without variable, macro expansion fails
char JnRAStr[64] = {0};
fs_sexa(JnRAStr, RA, 2, 360000);
char JnDecStr[64] = {0};
fs_sexa(JnDecStr, Dec, 2, 360000);
// IDLog("Longitude : %8.3f, Latitude : %8.3f\n", this->Longitude, this->Latitude);
// IDLog("King gamma : %8.3f, King theta : %8.3f\n", m_KingGamma / DEGREES_TO_RADIANS, m_KingTheta / DEGREES_TO_RADIANS);
// IDLog("Jnow RA : %11s, dec: %11s\n", JnRAStr, JnDecStr );
// IDLog("Jnow RA : %8.3f, Dec : %8.3f\n", RA * 15., Dec);
// IDLog("J2000 Pos.ra: %8.3f, Pos.dec: %8.3f\n", J2000Pos.ra, J2000Pos.dec);
// Since the catalog is J2000, we are going back in time
// tra, tdec are at the center of the projection center for the simulated
// images
//double J2ra = J2000Pos.ra; // J2000Pos: 0,360, RA: 0,24
double J2dec = J2000Pos.declination;
//double J2rar = J2ra * DEGREES_TO_RADIANS;
double J2decr = J2dec * DEGREES_TO_RADIANS;
double sid = get_local_sidereal_time(this->Longitude);
// HA is what is observed, that is Jnow
// ToDo check if mean or apparent
double JnHAr = get_local_hour_angle(sid, RA) * 15. * DEGREES_TO_RADIANS;
char sidStr[64] = {0};
fs_sexa(sidStr, sid, 2, 3600);
char JnHAStr[64] = {0};
fs_sexa(JnHAStr, JnHAr / 15. / DEGREES_TO_RADIANS, 2, 360000);
// IDLog("sid : %s\n", sidStr);
// IDLog("Jnow JnHA: %8.3f degree\n", JnHAr / DEGREES_TO_RADIANS);
// IDLog(" JnHAStr: %11s hms\n", JnHAStr);
// m_KingTheta is the HA of the great circle where the HA axis is in.
// RA is a right and HA a left handed coordinate system.
// apparent or J2000? apparent, since we live now :-)
// Transform to the mount coordinate system
// remember it is the center of the simulated image
double J2_mnt_d_rar = m_KingGamma * sin(J2decr) * sin(JnHAr - m_KingTheta) / cos(J2decr);
double J2_mnt_rar = rar - J2_mnt_d_rar
; // rad = m_CurrentRA * 15.0; rar = rad * DEGREES_TO_RADIANS; m_CurrentRA = J2000Pos.ra / 15.0;
// Imagine the HA axis points to HA=0, dec=89deg, then in the mount's coordinate
// system a star at true dec = 88 is seen at 89 deg in the mount's system
// Or in other words: if one uses the setting circle, that is the mount system,
// and set it to 87 deg then the real location is at 88 deg.
double J2_mnt_d_decr = m_KingGamma * cos(JnHAr - m_KingTheta);
double J2_mnt_decr = decr + J2_mnt_d_decr
; // decr = cameradec * DEGREES_TO_RADIANS; cameradec = m_CurrentDEC + m_OAGoffset / 60; m_CurrentDEC = J2000Pos.dec;
// IDLog("raw mod ra : %8.3f, dec: %8.3f (degree)\n", J2_mnt_rar / DEGREES_TO_RADIANS, J2_mnt_decr / DEGREES_TO_RADIANS );
if (J2_mnt_decr > M_PI / 2.)
{
J2_mnt_decr = M_PI / 2. - (J2_mnt_decr - M_PI / 2.);
J2_mnt_rar -= M_PI;
}
J2_mnt_rar = fmod(J2_mnt_rar, 2. * M_PI) ;
// IDLog("mod sin : %8.3f, cos: %8.3f\n", sin(JnHAr - m_KingTheta), cos(JnHAr - m_KingTheta));
// IDLog("mod dra : %8.3f, ddec: %8.3f (degree)\n", J2_mnt_d_rar / DEGREES_TO_RADIANS, J2_mnt_d_decr / DEGREES_TO_RADIANS );
// IDLog("mod ra : %8.3f, dec: %8.3f (degree)\n", J2_mnt_rar / DEGREES_TO_RADIANS, J2_mnt_decr / DEGREES_TO_RADIANS );
//IDLog("mod ra : %11s, dec: %11s\n", );
char J2RAStr[64] = {0};
fs_sexa(J2RAStr, J2_mnt_rar / 15. / DEGREES_TO_RADIANS, 2, 360000);
char J2DecStr[64] = {0};
fs_sexa(J2DecStr, J2_mnt_decr / DEGREES_TO_RADIANS, 2, 360000);
// IDLog("mod ra : %s, dec: %s\n", J2RAStr, J2DecStr );
// IDLog("PEOffset : %10.5f setting it to ZERO\n", PEOffset);
PEOffset = 0.;
// feed the result to the original variables
rar = J2_mnt_rar ;
rad = rar / DEGREES_TO_RADIANS;
decr = J2_mnt_decr;
cameradec = decr / DEGREES_TO_RADIANS;
// IDLog("mod ra rad: %8.3f (degree)\n", rad);
}
// if this is a light frame, we need a star field drawn
INDI::CCDChip::CCD_FRAME ftype = targetChip->getFrameType();
std::unique_lock<std::mutex> guard(ccdBufferLock);
// Start by clearing the frame buffer
memset(targetChip->getFrameBuffer(), 0, targetChip->getFrameBufferSize());
if (ftype == INDI::CCDChip::LIGHT_FRAME)
{
AutoCNumeric locale;
char gsccmd[250];
FILE * pp;
int drawn = 0;
sprintf(gsccmd, "gsc -c %8.6f %+8.6f -r %4.1f -m 0 %4.2f -n 3000",
range360(rad),
rangeDec(cameradec),
radius,
lookuplimit);
if (!Streamer->isStreaming() || (m_KingGamma > 0.))
LOGF_DEBUG("GSC Command: %s", gsccmd);
pp = popen(gsccmd, "r");
if (pp != nullptr)
{
char line[256];
while (fgets(line, 256, pp) != nullptr)
{
// ok, lets parse this line for specifics we want
char id[20];
char plate[6];
char ob[6];
float mag;
float mage;
float ra;
float dec;
float pose;
int band;
float dist;
int dir;
int c;
int rc = sscanf(line, "%10s %f %f %f %f %f %d %d %4s %2s %f %d", id, &ra, &dec, &pose, &mag, &mage,
&band, &c, plate, ob, &dist, &dir);
if (rc == 12)
{
// Convert the ra/dec to standard co-ordinates
double sx; // standard co-ords
double sy; //
double srar; // star ra in radians
double sdecr; // star dec in radians;
double ccdx;
double ccdy;
srar = ra * DEGREES_TO_RADIANS;
sdecr = dec * DEGREES_TO_RADIANS;
// Handbook of astronomical image processing
// page 253
// equations 9.1 and 9.2
// convert ra/dec to standard co-ordinates
sx = cos(sdecr) * sin(srar - rar) /
(cos(decr) * cos(sdecr) * cos(srar - rar) + sin(decr) * sin(sdecr));
sy = (sin(decr) * cos(sdecr) * cos(srar - rar) - cos(decr) * sin(sdecr)) /
(cos(decr) * cos(sdecr) * cos(srar - rar) + sin(decr) * sin(sdecr));
// now convert to pixels
ccdx = pa * sx + pb * sy + pc;
ccdy = pd * sx + pe * sy + pf;
// Invert horizontally and transform CW to CCW (see above)
ccdx = ccdW - ccdx;
rc = DrawImageStar(targetChip, mag, ccdx, ccdy, exposure_time, zeroPointK, zeroPointZ);
drawn += rc;
if (rc == 1)
{
//LOGF_DEBUG("star %s scope %6.4f %6.4f star %6.4f %6.4f ccd %6.2f %6.2f",id,rad,decPE,ra,dec,ccdx,ccdy);
//LOGF_DEBUG("star %s ccd %6.2f %6.2f",id,ccdx,ccdy);
}
}
}
pclose(pp);
}
else
{
LOG_ERROR("Error looking up stars, is gsc installed with appropriate environment variables set ??");
}
if (drawn == 0)
{
LOG_ERROR("Got no stars, is gsc installed with appropriate environment variables set ??");
}
}
//fprintf(stderr,"Got %d stars from %d lines drew %d\n",stars,lines,drawn);
// now we need to add background sky glow, with vignetting
// this is essentially the same math as drawing a dim star with
// fwhm equivalent to the full field of view
if (ftype == INDI::CCDChip::LIGHT_FRAME || ftype == INDI::CCDChip::FLAT_FRAME)
{
float skyflux;
// calculate flux from our zero point and gain values
float glow = m_SkyGlow;
if (ftype == INDI::CCDChip::FLAT_FRAME)
{
// Assume flats are done with a diffuser
// in broad daylight, so, the sky magnitude
// is much brighter than at night
glow = m_SkyGlow / 10;
}
//fprintf(stderr,"Using glow %4.2f\n",glow);
skyflux = pow(10, ((glow - zeroPointZ) * zeroPointK / -2.5));
// ok, flux represents one second now
// scale up linearly for exposure time
skyflux = skyflux * exposure_time;
//IDLog("SkyFlux = %g m_ExposureRequest %g\n",skyflux,exposure_time);
uint16_t * pt = reinterpret_cast<uint16_t *>(targetChip->getFrameBuffer());
nheight = targetChip->getSubH();
nwidth = targetChip->getSubW();
for (int y = 0; y < nheight; y++)
{
for (int x = 0; x < nwidth; x++)
{
float dc; // distance from center
float fp; // flux this pixel;
float sx, sy;
float vig;
sx = nwidth / 2 - x;
sy = nheight / 2 - y;
vig = nwidth;
vig = vig * m_ImageScaleX;
// need to make this account for actual pixel size
dc = std::sqrt(sx * sx * m_ImageScaleX * m_ImageScaleX + sy * sy * m_ImageScaleY * m_ImageScaleY);
// now we have the distance from center, in arcseconds
// now lets plot a gaussian falloff to the edges
//
float fa;
fa = exp(-2.0 * 0.7 * (dc * dc) / vig / vig);
// get the current value
fp = pt[0];
// Add the sky glow
fp += skyflux;
// now scale it for the vignetting
fp = fa * fp;
// clamp to limits
if (fp > m_MaxVal)
fp = m_MaxVal;
if (fp > m_MaxPix)
m_MaxPix = fp;
if (fp < m_MinPix)
m_MinPix = fp;
// and put it back
pt[0] = fp;
pt++;
}
}
}
// Now we add some bias and read noise
int subX = targetChip->getSubX();
int subY = targetChip->getSubY();
int subW = targetChip->getSubW() + subX;
int subH = targetChip->getSubH() + subY;
if (m_MaxNoise > 0)
{
for (int x = subX; x < subW; x++)
{
for (int y = subY; y < subH; y++)
{
int noise;
noise = random();
noise = noise % m_MaxNoise; //
//IDLog("noise is %d\n", noise);
AddToPixel(targetChip, x, y, m_Bias + noise);
}
}
}
}
else
{
m_TestValue++;
if (m_TestValue > 255)
m_TestValue = 0;
uint16_t val = m_TestValue;
int nbuf = targetChip->getSubW() * targetChip->getSubH();
for (int x = 0; x < nbuf; x++)
{
*ptr = val++;
ptr++;
}
}
return 0;
}
int GuideSim::DrawImageStar(INDI::CCDChip * targetChip, float mag, float x, float y, float exposure_time, double zeroPointK,
double zeroPointZ)
{
const int subX = targetChip->getSubX();
const int subY = targetChip->getSubY();
const int subW = targetChip->getSubW() + subX;
const int subH = targetChip->getSubH() + subY;
if ((x < subX) || (x > subW || (y < subY) || (y > subH)))
{
// this star is not on the ccd frame anyways
return 0;
}
// Calculate flux from our zero point and gain values
// Mag represents one second, scale up linearly for exposure time.
const double flux = exposure_time * pow(10, ((mag - zeroPointZ) * zeroPointK / -2.5));
const double seeingSquared = m_Seeing * m_Seeing;
const double pixelPartX = x - static_cast<int>(x);
const double pixelPartY = y - static_cast<int>(y);
int drew = 0;
const int boxSize = static_cast<int>(3 * m_Seeing / m_ImageScaleY) + 1;
for (int sy = -boxSize; sy <= boxSize; sy++)
{
for (int sx = -boxSize; sx <= boxSize; sx++)
{
// Need to make this account for actual pixel size
const double dx = m_ImageScaleX * (sx - pixelPartX);
const double dy = m_ImageScaleY * (sy - pixelPartY);
// Distance from center (arcseconds).
const float distanceSquared = dx * dx + dy * dy;
float pixelFlux = flux * exp(-2.0 * 0.7 * distanceSquared / seeingSquared);
if (pixelFlux < 0)
pixelFlux = 0;
if (AddToPixel(targetChip, x + sx, y + sy, pixelFlux) != 0)
drew = 1;
}
}
return drew;
}
int GuideSim::AddToPixel(INDI::CCDChip * targetChip, int x, int y, int val)
{
int nwidth = targetChip->getSubW();
int nheight = targetChip->getSubH();
x -= targetChip->getSubX();
y -= targetChip->getSubY();
int drew = 0;
if (x >= 0)
{
if (x < nwidth)
{
if (y >= 0)
{
if (y < nheight)
{
unsigned short * pt;
int newval;
drew++;
pt = reinterpret_cast<uint16_t *>(targetChip->getFrameBuffer());
pt += (y * nwidth);
pt += x;
newval = pt[0];
newval += val;
if (newval > m_MaxVal)
newval = m_MaxVal;
if (newval > m_MaxPix)
m_MaxPix = newval;
if (newval < m_MinPix)
m_MinPix = newval;
pt[0] = newval;
}
}
}
}
return drew;
}
IPState GuideSim::GuideNorth(uint32_t v)
{
m_GuideNSOffset += v / 1000.0 * m_GuideRate / 3600;
return IPS_OK;
}
IPState GuideSim::GuideSouth(uint32_t v)
{
m_GuideNSOffset += v / -1000.0 * m_GuideRate / 3600;
return IPS_OK;
}
IPState GuideSim::GuideEast(uint32_t v)
{
float c = v / 1000.0 * m_GuideRate;
c = c / 3600.0 / 15.0;
c = c / (cos(m_CurrentDEC * DEGREES_TO_RADIANS));
m_GuideWEOffset += c;
return IPS_OK;
}
IPState GuideSim::GuideWest(uint32_t v)
{
float c = v / -1000.0 * m_GuideRate;
c = c / 3600.0 / 15.0;
c = c / (cos(m_CurrentDEC * DEGREES_TO_RADIANS));
m_GuideWEOffset += c;
return IPS_OK;
}
bool GuideSim::ISNewNumber(const char * dev, const char * name, double values[], char * names[], int n)
{
if (dev != nullptr && strcmp(dev, getDeviceName()) == 0)
{
if (GainNP.isNameMatch(name))
{
GainNP.update(values, names, n);
GainNP.setState(IPS_OK);
GainNP.apply();
return true;
}
if (strcmp(name, "SIMULATOR_SETTINGS") == 0)
{
SimulatorSettingsNP.update(values, names, n);
SimulatorSettingsNP.setState(IPS_OK);
// Reset our parameters now
SetupParms();
SimulatorSettingsNP.apply();
m_MaxNoise = SimulatorSettingsNP[SIM_NOISE].getValue();
m_SkyGlow = SimulatorSettingsNP[SIM_SKYGLOW].getValue();
m_MaxVal = SimulatorSettingsNP[SIM_MAXVAL].getValue();
m_Bias = SimulatorSettingsNP[SIM_BIAS].getValue();
m_LimitingMag = SimulatorSettingsNP[SIM_LIMITINGMAG].getValue();
m_SaturationMag = SimulatorSettingsNP[SIM_SATURATION].getValue();
m_OAGoffset = SimulatorSettingsNP[SIM_OAGOFFSET].getValue();
m_PolarError = SimulatorSettingsNP[SIM_POLAR].getValue();
m_PolarDrift = SimulatorSettingsNP[SIM_POLARDRIFT].getValue();
m_RotationCW = SimulatorSettingsNP[SIM_ROTATION].getValue();
// Kwiq++
m_KingGamma = SimulatorSettingsNP[SIM_KING_GAMMA].getValue() * DEGREES_TO_RADIANS;
m_KingTheta = SimulatorSettingsNP[SIM_KING_THETA].getValue() * DEGREES_TO_RADIANS;
m_TimeFactor = SimulatorSettingsNP[SIM_TIME_FACTOR].getValue();
m_Seeing = SimulatorSettingsNP[SIM_SEEING].getValue();
m_RaTimeDrift = SimulatorSettingsNP[SIM_RA_DRIFT].getValue();
m_DecTimeDrift = SimulatorSettingsNP[SIM_DEC_DRIFT].getValue();
m_RaRand = SimulatorSettingsNP[SIM_RA_RAND].getValue();
m_DecRand = SimulatorSettingsNP[SIM_DEC_RAND].getValue();
m_PEPeriod = SimulatorSettingsNP[SIM_PE_PERIOD].getValue();
m_PEMax = SimulatorSettingsNP[SIM_PE_MAX].getValue();
m_TemperatureRequest = SimulatorSettingsNP[SIM_TEMPERATURE].getValue();
TemperatureNP[0].setValue(m_TemperatureRequest);
TemperatureNP.apply();
return true;
}
// Record PE EQ to simulate different position in the sky than actual mount coordinate
// This can be useful to simulate Periodic Error or cone error or any arbitrary error.
if (EqPENP.isNameMatch(name))
{
EqPENP.update(values, names, n);
EqPENP.setState(IPS_OK);
INDI::IEquatorialCoordinates epochPos { EqPENP[AXIS_RA].getValue(), EqPENP[AXIS_DE].getValue() }, J2000Pos { 0, 0 };
INDI::ObservedToJ2000(&epochPos, ln_get_julian_from_sys(), &J2000Pos);
m_CurrentRA = J2000Pos.rightascension;
m_CurrentDEC = J2000Pos.declination;
m_UsePE = true;
EqPENP.apply();
return true;
}
}
return INDI::CCD::ISNewNumber(dev, name, values, names, n);
}
bool GuideSim::ISNewSwitch(const char * dev, const char * name, ISState * states, char * names[], int n)
{
if (dev != nullptr && strcmp(dev, getDeviceName()) == 0)
{
if (SimulateRgbSP.isNameMatch(name))
{
SimulateRgbSP.update(states, names, n);
int index = SimulateRgbSP.findOnSwitchIndex();
if (index == -1)
{
SimulateRgbSP.setState(IPS_ALERT);
LOG_INFO("Cannot determine whether RGB simulation should be switched on or off.");
SimulateRgbSP.apply();
return false;
}
m_SimulateRGB = index == 0;
setRGB(m_SimulateRGB);
SimulateRgbSP[SIMULATE_YES].setState(m_SimulateRGB ? ISS_ON : ISS_OFF);
SimulateRgbSP[SIMULATE_NO].setState(m_SimulateRGB ? ISS_OFF : ISS_ON);
SimulateRgbSP.setState(IPS_OK);
SimulateRgbSP.apply();
return true;
}
if (ToggleTimeoutSP.isNameMatch(name))
{
ToggleTimeoutSP.update(states, names, n);
ToggleTimeoutSP.setState(IPS_OK);
ToggleTimeoutSP.apply();
return true;
}
}
// Nobody has claimed this, so, ignore it
return INDI::CCD::ISNewSwitch(dev, name, states, names, n);
}
void GuideSim::activeDevicesUpdated()
{
#ifdef USE_EQUATORIAL_PE
IDSnoopDevice(ActiveDeviceTP[0].getText(), "EQUATORIAL_PE");
#else
IDSnoopDevice(ActiveDeviceTP[ACTIVE_TELESCOPE].getText(), "EQUATORIAL_EOD_COORD");
#endif
}
bool GuideSim::ISSnoopDevice(XMLEle * root)
{
// We try to snoop EQPEC first, if not found, we snoop regular EQNP
#ifdef USE_EQUATORIAL_PE
const char * propName = findXMLAttValu(root, "name");
if (!strcmp(propName, EqPENP.name))
{
XMLEle * ep = nullptr;
int rc_ra = -1, rc_de = -1;
double newra = 0, newdec = 0;
for (ep = nextXMLEle(root, 1); ep != nullptr; ep = nextXMLEle(root, 0))
{
const char * elemName = findXMLAttValu(ep, "name");
if (!strcmp(elemName, "RA_PE"))
rc_ra = f_scansexa(pcdataXMLEle(ep), &newra);
else if (!strcmp(elemName, "DEC_PE"))
rc_de = f_scansexa(pcdataXMLEle(ep), &newdec);
}
if (rc_ra == 0 && rc_de == 0 && ((newra != raPE) || (newdec != decPE)))
{
INDI::IEquatorialCoordinates epochPos { 0, 0 }, J2000Pos { 0, 0 };
epochPos.ra = newra * 15.0;
epochPos.dec = newdec;
ln_get_equ_prec2(&epochPos, ln_get_julian_from_sys(), JD2000, &J2000Pos);
raPE = J2000Pos.ra / 15.0;
decPE = J2000Pos.dec;
m_UsePE = true;
EqPEN[AXIS_RA].value = newra;
EqPEN[AXIS_DE].value = newdec;
IDSetNumber(&EqPENP, nullptr);
LOGF_DEBUG("raPE %g decPE %g Snooped raPE %g decPE %g", raPE, decPE, newra, newdec);
return true;
}
}
#endif
return INDI::CCD::ISSnoopDevice(root);
}
bool GuideSim::saveConfigItems(FILE * fp)
{
// Save CCD Config
INDI::CCD::saveConfigItems(fp);
// Save CCD Simulator Config
SimulatorSettingsNP.save(fp);
// Gain
GainNP.save(fp);
// RGB
SimulateRgbSP.save(fp);
return true;
}
bool GuideSim::StartStreaming()
{
m_ExposureRequest = 1.0 / Streamer->getTargetExposure();
pthread_mutex_lock(&condMutex);
m_StreamPredicate = 1;
pthread_mutex_unlock(&condMutex);
pthread_cond_signal(&cv);
return true;
}
bool GuideSim::StopStreaming()
{
pthread_mutex_lock(&condMutex);
m_StreamPredicate = 0;
pthread_mutex_unlock(&condMutex);
pthread_cond_signal(&cv);
return true;
}
bool GuideSim::UpdateCCDFrame(int x, int y, int w, int h)
{
long bin_width = w / PrimaryCCD.getBinX();
long bin_height = h / PrimaryCCD.getBinY();
bin_width = bin_width - (bin_width % 2);
bin_height = bin_height - (bin_height % 2);
Streamer->setSize(bin_width, bin_height);
return INDI::CCD::UpdateCCDFrame(x, y, w, h);
}
bool GuideSim::UpdateCCDBin(int hor, int ver)
{
if (hor == 3 || ver == 3)
{
LOG_ERROR("3x3 binning is not supported.");
return false;
}
long bin_width = PrimaryCCD.getSubW() / hor;
long bin_height = PrimaryCCD.getSubH() / ver;
bin_width = bin_width - (bin_width % 2);
bin_height = bin_height - (bin_height % 2);
Streamer->setSize(bin_width, bin_height);
return INDI::CCD::UpdateCCDBin(hor, ver);
}
void * GuideSim::streamVideoHelper(void * context)
{
return static_cast<GuideSim *>(context)->streamVideo();
}
void * GuideSim::streamVideo()
{
auto start = std::chrono::high_resolution_clock::now();
auto finish = std::chrono::high_resolution_clock::now();
while (true)
{
pthread_mutex_lock(&condMutex);
while (m_StreamPredicate == 0)
{
pthread_cond_wait(&cv, &condMutex);
m_ExposureRequest = Streamer->getTargetExposure();
}
if (m_TerminateThread)
break;
// release condMutex
pthread_mutex_unlock(&condMutex);
// 16 bit
DrawCcdFrame(&PrimaryCCD);
PrimaryCCD.binFrame();
finish = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = finish - start;
if (elapsed.count() < m_ExposureRequest)
usleep(fabs(m_ExposureRequest - elapsed.count()) * 1e6);
uint32_t size = PrimaryCCD.getFrameBufferSize() / (PrimaryCCD.getBinX() * PrimaryCCD.getBinY());
Streamer->newFrame(PrimaryCCD.getFrameBuffer(), size);
start = std::chrono::high_resolution_clock::now();
}
pthread_mutex_unlock(&condMutex);
return nullptr;
}
void GuideSim::addFITSKeywords(INDI::CCDChip *targetChip, std::vector<INDI::FITSRecord> &fitsKeywords)
{
INDI::CCD::addFITSKeywords(targetChip, fitsKeywords);
fitsKeywords.push_back({"GAIN", GainNP[0].getValue(), 3, "Gain"});
}
|