File: BasicMathPlugin.cpp

package info (click to toggle)
indi 2.1.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 15,888 kB
  • sloc: cpp: 217,447; ansic: 31,363; xml: 1,195; sh: 311; makefile: 13
file content (957 lines) | stat: -rw-r--r-- 47,299 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/// \file BasicMathPlugin.cpp
/// \author Roger James
/// \date 13th November 2013

#include "BasicMathPlugin.h"

#include "DriverCommon.h"
#include "libastro.h"
#include <libnova/julian_day.h>

#include <gsl/gsl_blas.h>
#include <gsl/gsl_permutation.h>
#include <gsl/gsl_linalg.h>

#include "indicom.h"

#include <limits>
#include <iostream>
#include <map>

namespace INDI
{
namespace AlignmentSubsystem
{
BasicMathPlugin::BasicMathPlugin()
{
    pActualToApparentTransform = gsl_matrix_alloc(3, 3);
    pApparentToActualTransform = gsl_matrix_alloc(3, 3);
}

// Destructor

BasicMathPlugin::~BasicMathPlugin()
{
    gsl_matrix_free(pActualToApparentTransform);
    gsl_matrix_free(pApparentToActualTransform);
}

// Public methods

bool BasicMathPlugin::Initialise(InMemoryDatabase *pInMemoryDatabase)
{
    MathPlugin::Initialise(pInMemoryDatabase);
    InMemoryDatabase::AlignmentDatabaseType &SyncPoints = pInMemoryDatabase->GetAlignmentDatabase();

    /// See how many entries there are in the in memory database.
    /// - If just one use a hint to mounts approximate alignment, this can either be ZENITH,
    /// NORTH_CELESTIAL_POLE or SOUTH_CELESTIAL_POLE. The hint is used to make a dummy second
    /// entry. A dummy third entry is computed from the cross product of the first two. A transform
    /// matrix is then computed.
    /// - If two make the dummy third entry and compute a transform matrix.
    /// - If three compute a transform matrix.
    /// - If four or more compute a convex hull, then matrices for each
    /// triangular facet of the hull.
    switch (SyncPoints.size())
    {
        // JM 2021-07-04: No Transformation required.
        case 0:
            return true;

        // JM 2021-07-04: For 1 point, it should be direct reciporical transformation.
        case 1:
        {
            AlignmentDatabaseEntry &Entry1 = SyncPoints[0];
            INDI::IEquatorialCoordinates RaDec;
            INDI::IHorizontalCoordinates ActualSyncPoint1;
            TelescopeDirectionVector ActualDirectionCosine1;
            IGeographicCoordinates Position;
            if (!pInMemoryDatabase->GetDatabaseReferencePosition(Position))
                return false;
            RaDec.declination = Entry1.Declination;
            RaDec.rightascension = Entry1.RightAscension;
            if (ApproximateMountAlignment == ZENITH)
            {
                EquatorialToHorizontal(&RaDec, &Position, Entry1.ObservationJulianDate, &ActualSyncPoint1);
                // Now express this coordinate as a normalised direction vector (a.k.a direction cosines)
                ActualDirectionCosine1 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint1);
            }
            else
            {
                ActualDirectionCosine1 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec);
            }
            TelescopeDirectionVector DummyActualDirectionCosine2;
            TelescopeDirectionVector DummyApparentDirectionCosine2;
            TelescopeDirectionVector DummyActualDirectionCosine3;
            TelescopeDirectionVector DummyApparentDirectionCosine3;

            switch (ApproximateMountAlignment)
            {
                case ZENITH:
                    DummyActualDirectionCosine2.x = 0.0;
                    DummyActualDirectionCosine2.y = 0.0;
                    DummyActualDirectionCosine2.z = 1.0;
                    DummyApparentDirectionCosine2 = DummyActualDirectionCosine2;
                    break;

                case NORTH_CELESTIAL_POLE:
                {
                    INDI::IEquatorialCoordinates DummyRaDec;
                    //INDI::IHorizontalCoordinates DummyAltAz;
                    DummyRaDec.rightascension  = 0.0;
                    DummyRaDec.declination = 90.0;
                    //EquatorialToHorizontal(&DummyRaDec, &Position, ln_get_julian_from_sys(), &DummyAltAz);
                    DummyActualDirectionCosine2   = TelescopeDirectionVectorFromEquatorialCoordinates(DummyRaDec);
                    DummyApparentDirectionCosine2 = DummyActualDirectionCosine2;
                    break;
                }
                case SOUTH_CELESTIAL_POLE:
                {
                    INDI::IEquatorialCoordinates DummyRaDec;
                    //INDI::IHorizontalCoordinates DummyAltAz;
                    DummyRaDec.rightascension  = 0.0;
                    DummyRaDec.declination = -90.0;
                    //EquatorialToHorizontal(&DummyRaDec, &Position, ln_get_julian_from_sys(), &DummyAltAz);
                    DummyActualDirectionCosine2   = TelescopeDirectionVectorFromEquatorialCoordinates(DummyRaDec);
                    DummyApparentDirectionCosine2 = DummyActualDirectionCosine2;
                    break;
                }
            }
            DummyActualDirectionCosine3 = ActualDirectionCosine1 * DummyActualDirectionCosine2;
            DummyActualDirectionCosine3.Normalise();
            DummyApparentDirectionCosine3 = Entry1.TelescopeDirection * DummyApparentDirectionCosine2;
            DummyApparentDirectionCosine3.Normalise();
            CalculateTransformMatrices(ActualDirectionCosine1, DummyActualDirectionCosine2, DummyActualDirectionCosine3,
                                       Entry1.TelescopeDirection, DummyApparentDirectionCosine2,
                                       DummyApparentDirectionCosine3, pActualToApparentTransform,
                                       pApparentToActualTransform);
            return true;
        }
        case 2:
        {
            // First compute local horizontal coordinates for the two sync points
            AlignmentDatabaseEntry &Entry1 = SyncPoints[0];
            AlignmentDatabaseEntry &Entry2 = SyncPoints[1];
            INDI::IEquatorialCoordinates RaDec1;
            INDI::IEquatorialCoordinates RaDec2;
            TelescopeDirectionVector ActualDirectionCosine1;
            TelescopeDirectionVector ActualDirectionCosine2;
            RaDec1.declination = Entry1.Declination;
            RaDec1.rightascension  = Entry1.RightAscension;
            RaDec2.declination = Entry2.Declination;
            RaDec2.rightascension = Entry2.RightAscension;
            IGeographicCoordinates Position { 0, 0, 0 };
            if (!pInMemoryDatabase->GetDatabaseReferencePosition(Position))
                return false;
            if (ApproximateMountAlignment == ZENITH)
            {
                INDI::IHorizontalCoordinates ActualSyncPoint1;
                INDI::IHorizontalCoordinates ActualSyncPoint2;
                EquatorialToHorizontal(&RaDec1, &Position, Entry1.ObservationJulianDate, &ActualSyncPoint1);
                EquatorialToHorizontal(&RaDec2, &Position, Entry2.ObservationJulianDate, &ActualSyncPoint2);
                ActualDirectionCosine1 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint1);
                ActualDirectionCosine2 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint2);
            }
            else
            {
                ActualDirectionCosine1 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec1);
                ActualDirectionCosine2 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec2);
            }

            // Now express these coordinates as normalised direction vectors (a.k.a direction cosines)
            TelescopeDirectionVector DummyActualDirectionCosine3;
            TelescopeDirectionVector DummyApparentDirectionCosine3;
            DummyActualDirectionCosine3 = ActualDirectionCosine1 * ActualDirectionCosine2;
            DummyActualDirectionCosine3.Normalise();
            DummyApparentDirectionCosine3 = Entry1.TelescopeDirection * Entry2.TelescopeDirection;
            DummyApparentDirectionCosine3.Normalise();

            // The third direction vectors is generated by taking the cross product of the first two
            CalculateTransformMatrices(ActualDirectionCosine1, ActualDirectionCosine2, DummyActualDirectionCosine3,
                                       Entry1.TelescopeDirection, Entry2.TelescopeDirection,
                                       DummyApparentDirectionCosine3, pActualToApparentTransform,
                                       pApparentToActualTransform);
            return true;
        }

        case 3:
        {
            // First compute local horizontal coordinates for the three sync points
            AlignmentDatabaseEntry &Entry1 = SyncPoints[0];
            AlignmentDatabaseEntry &Entry2 = SyncPoints[1];
            AlignmentDatabaseEntry &Entry3 = SyncPoints[2];
            INDI::IEquatorialCoordinates RaDec1, RaDec2, RaDec3;
            TelescopeDirectionVector ActualDirectionCosine1, ActualDirectionCosine2, ActualDirectionCosine3;
            RaDec1.declination = Entry1.Declination;
            RaDec1.rightascension  = Entry1.RightAscension;
            RaDec2.declination = Entry2.Declination;
            RaDec2.rightascension  = Entry2.RightAscension;
            RaDec3.declination = Entry3.Declination;
            RaDec3.rightascension = Entry3.RightAscension;
            IGeographicCoordinates Position { 0, 0, 0 };
            if (!pInMemoryDatabase->GetDatabaseReferencePosition(Position))
                return false;
            if (ApproximateMountAlignment == ZENITH)
            {
                INDI::IHorizontalCoordinates ActualSyncPoint1;
                INDI::IHorizontalCoordinates ActualSyncPoint2;
                INDI::IHorizontalCoordinates ActualSyncPoint3;
                EquatorialToHorizontal(&RaDec1, &Position, Entry1.ObservationJulianDate, &ActualSyncPoint1);
                EquatorialToHorizontal(&RaDec2, &Position, Entry2.ObservationJulianDate, &ActualSyncPoint2);
                EquatorialToHorizontal(&RaDec3, &Position, Entry3.ObservationJulianDate, &ActualSyncPoint3);

                // Now express these coordinates as normalised direction vectors (a.k.a direction cosines)
                ActualDirectionCosine1 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint1);
                ActualDirectionCosine2 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint2);
                ActualDirectionCosine3 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint3);
            }
            else
            {
                ActualDirectionCosine1 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec1);
                ActualDirectionCosine2 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec2);
                ActualDirectionCosine3 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec3);
            }

            CalculateTransformMatrices(ActualDirectionCosine1, ActualDirectionCosine2, ActualDirectionCosine3,
                                       Entry1.TelescopeDirection, Entry2.TelescopeDirection, Entry3.TelescopeDirection,
                                       pActualToApparentTransform, pApparentToActualTransform);
            return true;
        }

        default:
        {
            IGeographicCoordinates Position { 0, 0, 0 };
            if (!pInMemoryDatabase->GetDatabaseReferencePosition(Position))
                return false;

            // Compute Hulls etc.
            ActualConvexHull.Reset();
            ApparentConvexHull.Reset();
            ActualDirectionCosines.clear();

            // Add a dummy point at the nadir
            ActualConvexHull.MakeNewVertex(0.0, 0.0, -1.0, 0);
            ApparentConvexHull.MakeNewVertex(0.0, 0.0, -1.0, 0);

            int VertexNumber = 1;
            // Add the rest of the vertices
            for (InMemoryDatabase::AlignmentDatabaseType::const_iterator Itr = SyncPoints.begin();
                    Itr != SyncPoints.end(); Itr++)
            {
                INDI::IEquatorialCoordinates RaDec;
                TelescopeDirectionVector ActualDirectionCosine;
                RaDec.declination = (*Itr).Declination;
                RaDec.rightascension = (*Itr).RightAscension;
                if (ApproximateMountAlignment == ZENITH)
                {
                    INDI::IHorizontalCoordinates ActualSyncPoint;
                    EquatorialToHorizontal(&RaDec, &Position, (*Itr).ObservationJulianDate, &ActualSyncPoint);
                    // Now express this coordinate as normalised direction vectors (a.k.a direction cosines)
                    ActualDirectionCosine = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint);
                }
                else
                {
                    ActualDirectionCosine = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec);
                }
                ActualDirectionCosines.push_back(ActualDirectionCosine);
                ActualConvexHull.MakeNewVertex(ActualDirectionCosine.x, ActualDirectionCosine.y,
                                               ActualDirectionCosine.z, VertexNumber);
                ApparentConvexHull.MakeNewVertex((*Itr).TelescopeDirection.x, (*Itr).TelescopeDirection.y,
                                                 (*Itr).TelescopeDirection.z, VertexNumber);
                VertexNumber++;
            }
            // I should only need to do this once but it is easier to do it twice
            if (!ActualConvexHull.DoubleTriangle())
                return false;
            ActualConvexHull.ConstructHull();
            ActualConvexHull.EdgeOrderOnFaces();

            if (!ApparentConvexHull.DoubleTriangle())
                return false;

            ApparentConvexHull.ConstructHull();
            ApparentConvexHull.EdgeOrderOnFaces();

            // Make the matrices
            ConvexHull::tFace CurrentFace = ActualConvexHull.faces;
#ifdef CONVEX_HULL_DEBUGGING
            int ActualFaces = 0;
#endif
            if (nullptr != CurrentFace)
            {
                do
                {
#ifdef CONVEX_HULL_DEBUGGING
                    ActualFaces++;
#endif
                    if ((0 == CurrentFace->vertex[0]->vnum) || (0 == CurrentFace->vertex[1]->vnum) ||
                            (0 == CurrentFace->vertex[2]->vnum))
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Initialise - Ignoring actual face %d", ActualFaces);
#endif
                    }
                    else
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Initialise - Processing actual face %d v1 %d v2 %d v3 %d", ActualFaces,
                                  CurrentFace->vertex[0]->vnum, CurrentFace->vertex[1]->vnum,
                                  CurrentFace->vertex[2]->vnum);
#endif
                        CalculateTransformMatrices(ActualDirectionCosines[CurrentFace->vertex[0]->vnum - 1],
                                                   ActualDirectionCosines[CurrentFace->vertex[1]->vnum - 1],
                                                   ActualDirectionCosines[CurrentFace->vertex[2]->vnum - 1],
                                                   SyncPoints[CurrentFace->vertex[0]->vnum - 1].TelescopeDirection,
                                                   SyncPoints[CurrentFace->vertex[1]->vnum - 1].TelescopeDirection,
                                                   SyncPoints[CurrentFace->vertex[2]->vnum - 1].TelescopeDirection,
                                                   CurrentFace->pMatrix, nullptr);
                    }
                    CurrentFace = CurrentFace->next;
                }
                while (CurrentFace != ActualConvexHull.faces);
            }

            // One of these days I will optimise this
            CurrentFace = ApparentConvexHull.faces;
#ifdef CONVEX_HULL_DEBUGGING
            int ApparentFaces = 0;
#endif
            if (nullptr != CurrentFace)
            {
                do
                {
#ifdef CONVEX_HULL_DEBUGGING
                    ApparentFaces++;
#endif
                    if ((0 == CurrentFace->vertex[0]->vnum) || (0 == CurrentFace->vertex[1]->vnum) ||
                            (0 == CurrentFace->vertex[2]->vnum))
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Initialise - Ignoring apparent face %d", ApparentFaces);
#endif
                    }
                    else
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Initialise - Processing apparent face %d v1 %d v2 %d v3 %d", ApparentFaces,
                                  CurrentFace->vertex[0]->vnum, CurrentFace->vertex[1]->vnum,
                                  CurrentFace->vertex[2]->vnum);
#endif
                        CalculateTransformMatrices(SyncPoints[CurrentFace->vertex[0]->vnum - 1].TelescopeDirection,
                                                   SyncPoints[CurrentFace->vertex[1]->vnum - 1].TelescopeDirection,
                                                   SyncPoints[CurrentFace->vertex[2]->vnum - 1].TelescopeDirection,
                                                   ActualDirectionCosines[CurrentFace->vertex[0]->vnum - 1],
                                                   ActualDirectionCosines[CurrentFace->vertex[1]->vnum - 1],
                                                   ActualDirectionCosines[CurrentFace->vertex[2]->vnum - 1],
                                                   CurrentFace->pMatrix, nullptr);
                    }
                    CurrentFace = CurrentFace->next;
                }
                while (CurrentFace != ApparentConvexHull.faces);
            }

#ifdef CONVEX_HULL_DEBUGGING
            ASSDEBUGF("Initialise - ActualFaces %d ApparentFaces %d", ActualFaces, ApparentFaces);
            ActualConvexHull.PrintObj("ActualHull.obj");
            ActualConvexHull.PrintOut("ActualHull.log", ActualConvexHull.vertices);
            ApparentConvexHull.PrintObj("ApparentHull.obj");
            ActualConvexHull.PrintOut("ApparentHull.log", ApparentConvexHull.vertices);
#endif
            return true;
        }
    }
}

bool BasicMathPlugin::TransformCelestialToTelescope(const double RightAscension, const double Declination,
        double JulianOffset,
        TelescopeDirectionVector &ApparentTelescopeDirectionVector)
{
    INDI::IEquatorialCoordinates ActualRaDec;
    ActualRaDec.rightascension  = RightAscension;
    ActualRaDec.declination = Declination;
    IGeographicCoordinates Position { 0, 0, 0 };

    // Should check that this the same as the current observing position
    if ((nullptr == pInMemoryDatabase) || !pInMemoryDatabase->GetDatabaseReferencePosition(Position))
        return false;

    InMemoryDatabase::AlignmentDatabaseType &SyncPoints = pInMemoryDatabase->GetAlignmentDatabase();
    switch (SyncPoints.size())
    {
        case 0:
        {
            // 0 sync points
            switch (ApproximateMountAlignment)
            {
                case ZENITH:
                    INDI::IHorizontalCoordinates ActualAltAz;
                    EquatorialToHorizontal(&ActualRaDec, &Position, ln_get_julian_from_sys() + JulianOffset, &ActualAltAz);
                    ApparentTelescopeDirectionVector = TelescopeDirectionVectorFromAltitudeAzimuth(ActualAltAz);
                    ASSDEBUGF("Celestial to telescope - Actual Az %lf Alt %lf", ActualAltAz.azimuth, ActualAltAz.altitude);
                    break;

                case NORTH_CELESTIAL_POLE:
                // Rotate the TDV coordinate system clockwise (negative) around the y axis by 90 minus
                // the (positive)observatory latitude. The vector itself is rotated anticlockwise
                //ApparentTelescopeDirectionVector.RotateAroundY(Position.latitude - 90.0);
                case SOUTH_CELESTIAL_POLE:
                    // Rotate the TDV coordinate system anticlockwise (positive) around the y axis by 90 plus
                    // the (negative)observatory latitude. The vector itself is rotated clockwise
                    //ApparentTelescopeDirectionVector.RotateAroundY(Position.latitude + 90.0);
                    ApparentTelescopeDirectionVector = TelescopeDirectionVectorFromEquatorialCoordinates(ActualRaDec);
                    break;
            }
            break;
        }
        case 1:
        case 2:
        case 3:
        {
            TelescopeDirectionVector ActualVector;
            if (ApproximateMountAlignment == ZENITH)
            {
                INDI::IHorizontalCoordinates ActualAltAz;
                EquatorialToHorizontal(&ActualRaDec, &Position, ln_get_julian_from_sys() + JulianOffset, &ActualAltAz);
                ActualVector = TelescopeDirectionVectorFromAltitudeAzimuth(ActualAltAz);
            }
            else
            {
                ActualVector = TelescopeDirectionVectorFromEquatorialCoordinates(ActualRaDec);
            }
            gsl_vector *pGSLActualVector = gsl_vector_alloc(3);
            gsl_vector_set(pGSLActualVector, 0, ActualVector.x);
            gsl_vector_set(pGSLActualVector, 1, ActualVector.y);
            gsl_vector_set(pGSLActualVector, 2, ActualVector.z);
            gsl_vector *pGSLApparentVector = gsl_vector_alloc(3);
            MatrixVectorMultiply(pActualToApparentTransform, pGSLActualVector, pGSLApparentVector);
            ApparentTelescopeDirectionVector.x = gsl_vector_get(pGSLApparentVector, 0);
            ApparentTelescopeDirectionVector.y = gsl_vector_get(pGSLApparentVector, 1);
            ApparentTelescopeDirectionVector.z = gsl_vector_get(pGSLApparentVector, 2);
            ApparentTelescopeDirectionVector.Normalise();
            gsl_vector_free(pGSLActualVector);
            gsl_vector_free(pGSLApparentVector);
            break;
        }

        default:
        {
            TelescopeDirectionVector ActualVector;
            if (ApproximateMountAlignment == ZENITH)
            {
                INDI::IHorizontalCoordinates ActualAltAz;
                EquatorialToHorizontal(&ActualRaDec, &Position, ln_get_julian_from_sys() + JulianOffset, &ActualAltAz);
                ActualVector = TelescopeDirectionVectorFromAltitudeAzimuth(ActualAltAz);
            }
            else
            {
                ActualVector = TelescopeDirectionVectorFromEquatorialCoordinates(ActualRaDec);
            }

            gsl_matrix *pTransform;
            gsl_matrix *pComputedTransform = nullptr;
            // Scale the actual telescope direction vector to make sure it traverses the unit sphere.
            TelescopeDirectionVector ScaledActualVector = ActualVector * 2.0;
            // Shoot the scaled vector in the into the list of actual facets
            // and use the conversuion matrix from the one it intersects
            ConvexHull::tFace CurrentFace = ActualConvexHull.faces;
#ifdef CONVEX_HULL_DEBUGGING
            int ActualFaces = 0;
#endif
            if (nullptr != CurrentFace)
            {
                do
                {
#ifdef CONVEX_HULL_DEBUGGING
                    ActualFaces++;
#endif
                    // Ignore faces containing vertex 0 (nadir).
                    if ((0 == CurrentFace->vertex[0]->vnum) || (0 == CurrentFace->vertex[1]->vnum) ||
                            (0 == CurrentFace->vertex[2]->vnum))
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Celestial to telescope - Ignoring actual face %d", ActualFaces);
#endif
                    }
                    else
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Celestial to telescope - Processing actual face %d v1 %d v2 %d v3 %d", ActualFaces,
                                  CurrentFace->vertex[0]->vnum, CurrentFace->vertex[1]->vnum,
                                  CurrentFace->vertex[2]->vnum);
#endif
                        if (RayTriangleIntersection(ScaledActualVector,
                                                    ActualDirectionCosines[CurrentFace->vertex[0]->vnum - 1],
                                                    ActualDirectionCosines[CurrentFace->vertex[1]->vnum - 1],
                                                    ActualDirectionCosines[CurrentFace->vertex[2]->vnum - 1]))
                            break;
                    }
                    CurrentFace = CurrentFace->next;
                }
                while (CurrentFace != ActualConvexHull.faces);
                if (CurrentFace == ActualConvexHull.faces)
                {
                    // Find the three nearest points and build a transform
                    std::map<double, const AlignmentDatabaseEntry *> NearestMap;
                    for (InMemoryDatabase::AlignmentDatabaseType::const_iterator Itr = SyncPoints.begin();
                            Itr != SyncPoints.end(); Itr++)
                    {
                        INDI::IEquatorialCoordinates RaDec;
                        TelescopeDirectionVector ActualDirectionCosine;
                        RaDec.rightascension  = (*Itr).RightAscension;
                        RaDec.declination = (*Itr).Declination;
                        if (ApproximateMountAlignment == ZENITH)
                        {
                            INDI::IHorizontalCoordinates ActualPoint;
                            EquatorialToHorizontal(&RaDec, &Position, (*Itr).ObservationJulianDate, &ActualPoint);
                            ActualDirectionCosine = TelescopeDirectionVectorFromAltitudeAzimuth(ActualPoint);
                        }
                        else
                        {
                            ActualDirectionCosine = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec);
                        }
                        NearestMap[(ActualDirectionCosine - ActualVector).Length()] = &(*Itr);
                    }
                    // First compute local horizontal coordinates for the three sync points
                    std::map<double, const AlignmentDatabaseEntry *>::const_iterator Nearest = NearestMap.begin();
                    const AlignmentDatabaseEntry *pEntry1                                    = (*Nearest).second;
                    Nearest++;
                    const AlignmentDatabaseEntry *pEntry2 = (*Nearest).second;
                    Nearest++;
                    const AlignmentDatabaseEntry *pEntry3 = (*Nearest).second;
                    INDI::IEquatorialCoordinates RaDec1;
                    INDI::IEquatorialCoordinates RaDec2;
                    INDI::IEquatorialCoordinates RaDec3;
                    TelescopeDirectionVector ActualDirectionCosine1;
                    TelescopeDirectionVector ActualDirectionCosine2;
                    TelescopeDirectionVector ActualDirectionCosine3;
                    RaDec1.declination = pEntry1->Declination;
                    RaDec1.rightascension  = pEntry1->RightAscension;
                    RaDec2.declination = pEntry2->Declination;
                    RaDec2.rightascension  = pEntry2->RightAscension;
                    RaDec3.declination = pEntry3->Declination;
                    RaDec3.rightascension = pEntry3->RightAscension;

                    if (ApproximateMountAlignment == ZENITH)
                    {
                        INDI::IHorizontalCoordinates ActualSyncPoint1;
                        INDI::IHorizontalCoordinates ActualSyncPoint2;
                        INDI::IHorizontalCoordinates ActualSyncPoint3;
                        EquatorialToHorizontal(&RaDec1, &Position, pEntry1->ObservationJulianDate, &ActualSyncPoint1);
                        EquatorialToHorizontal(&RaDec2, &Position, pEntry2->ObservationJulianDate, &ActualSyncPoint2);
                        EquatorialToHorizontal(&RaDec3, &Position, pEntry3->ObservationJulianDate, &ActualSyncPoint3);

                        // Now express these coordinates as normalised direction vectors (a.k.a direction cosines)
                        ActualDirectionCosine1 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint1);
                        ActualDirectionCosine2 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint2);
                        ActualDirectionCosine3 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint3);
                    }
                    else
                    {
                        ActualDirectionCosine1 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec1);
                        ActualDirectionCosine2 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec2);
                        ActualDirectionCosine3 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec3);
                    }

                    pComputedTransform = gsl_matrix_alloc(3, 3);
                    CalculateTransformMatrices(ActualDirectionCosine1, ActualDirectionCosine2, ActualDirectionCosine3,
                                               pEntry1->TelescopeDirection, pEntry2->TelescopeDirection,
                                               pEntry3->TelescopeDirection, pComputedTransform, nullptr);
                    pTransform = pComputedTransform;
                }
                else
                    pTransform = CurrentFace->pMatrix;
            }
            else
                return false;

            // OK - got an intersection - CurrentFace is pointing at the face
            gsl_vector *pGSLActualVector = gsl_vector_alloc(3);
            gsl_vector_set(pGSLActualVector, 0, ActualVector.x);
            gsl_vector_set(pGSLActualVector, 1, ActualVector.y);
            gsl_vector_set(pGSLActualVector, 2, ActualVector.z);
            gsl_vector *pGSLApparentVector = gsl_vector_alloc(3);
            MatrixVectorMultiply(pTransform, pGSLActualVector, pGSLApparentVector);
            ApparentTelescopeDirectionVector.x = gsl_vector_get(pGSLApparentVector, 0);
            ApparentTelescopeDirectionVector.y = gsl_vector_get(pGSLApparentVector, 1);
            ApparentTelescopeDirectionVector.z = gsl_vector_get(pGSLApparentVector, 2);
            ApparentTelescopeDirectionVector.Normalise();
            gsl_vector_free(pGSLActualVector);
            gsl_vector_free(pGSLApparentVector);
            if (nullptr != pComputedTransform)
                gsl_matrix_free(pComputedTransform);
            break;
        }
    }

    //    INDI::IHorizontalCoordinates ApparentAltAz;
    //    AltitudeAzimuthFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, ApparentAltAz);
    //    ASSDEBUGF("Celestial to telescope - Apparent Az %lf Alt %lf", ApparentAltAz.azimuth, ApparentAltAz.altitude);

    return true;
}

bool BasicMathPlugin::TransformTelescopeToCelestial(const TelescopeDirectionVector &ApparentTelescopeDirectionVector,
        double &RightAscension, double &Declination)
{
    IGeographicCoordinates Position;

    //INDI::IHorizontalCoordinates ApparentAltAz;
    INDI::IHorizontalCoordinates ActualAltAz;
    INDI::IEquatorialCoordinates ActualRaDec;

    //    AltitudeAzimuthFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, ApparentAltAz);
    //    ASSDEBUGF("Telescope to celestial - Apparent  Az %lf Alt %lf", ApparentAltAz.azimuth, ApparentAltAz.altitude);

    if ((nullptr == pInMemoryDatabase) || !pInMemoryDatabase->GetDatabaseReferencePosition(Position))
    {
        // Should check that this the same as the current observing position
        ASSDEBUG("No database or no position in database");
        return false;
    }
    InMemoryDatabase::AlignmentDatabaseType &SyncPoints = pInMemoryDatabase->GetAlignmentDatabase();
    switch (SyncPoints.size())
    {
        case 0:
        {
            // 0 sync points

            switch (ApproximateMountAlignment)
            {
                // For Alt-Az mounts, get Alt-Az from the telescope direction vector first
                // Then transform to actual RA/DE
                case ZENITH:
                {
                    ASSDEBUGF("ApparentVector x %lf y %lf z %lf", ApparentTelescopeDirectionVector.x,
                              ApparentTelescopeDirectionVector.y, ApparentTelescopeDirectionVector.z);
                    //ASSDEBUGF("ActualVector x %lf y %lf z %lf", RotatedTDV.x, RotatedTDV.y, RotatedTDV.z);
                    AltitudeAzimuthFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, ActualAltAz);
                    HorizontalToEquatorial(&ActualAltAz, &Position, ln_get_julian_from_sys(), &ActualRaDec);
                }
                break;

                // For equatorial mount with zero sync points, just convert back from telescope
                // direction vector to equatorial coordinates.
                case NORTH_CELESTIAL_POLE:
                case SOUTH_CELESTIAL_POLE:
                    EquatorialCoordinatesFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, ActualRaDec);
                    break;
            }

            RightAscension = ActualRaDec.rightascension;
            Declination    = ActualRaDec.declination;
            break;
        }
        case 1:
        case 2:
        case 3:
        {
            gsl_vector *pGSLApparentVector = gsl_vector_alloc(3);
            gsl_vector_set(pGSLApparentVector, 0, ApparentTelescopeDirectionVector.x);
            gsl_vector_set(pGSLApparentVector, 1, ApparentTelescopeDirectionVector.y);
            gsl_vector_set(pGSLApparentVector, 2, ApparentTelescopeDirectionVector.z);
            gsl_vector *pGSLActualVector = gsl_vector_alloc(3);
            MatrixVectorMultiply(pApparentToActualTransform, pGSLApparentVector, pGSLActualVector);

            Dump3("ApparentVector", pGSLApparentVector);
            Dump3("ActualVector", pGSLActualVector);

            TelescopeDirectionVector ActualTelescopeDirectionVector;
            ActualTelescopeDirectionVector.x = gsl_vector_get(pGSLActualVector, 0);
            ActualTelescopeDirectionVector.y = gsl_vector_get(pGSLActualVector, 1);
            ActualTelescopeDirectionVector.z = gsl_vector_get(pGSLActualVector, 2);
            ActualTelescopeDirectionVector.Normalise();
            if (ApproximateMountAlignment == ZENITH)
            {
                AltitudeAzimuthFromTelescopeDirectionVector(ActualTelescopeDirectionVector, ActualAltAz);
                HorizontalToEquatorial(&ActualAltAz, &Position, ln_get_julian_from_sys(), &ActualRaDec);
            }
            else
            {
                EquatorialCoordinatesFromTelescopeDirectionVector(ActualTelescopeDirectionVector, ActualRaDec);
            }
            RightAscension = ActualRaDec.rightascension;
            Declination    = ActualRaDec.declination;
            gsl_vector_free(pGSLActualVector);
            gsl_vector_free(pGSLApparentVector);
            break;
        }

        default:
        {
            gsl_matrix *pTransform;
            gsl_matrix *pComputedTransform = nullptr;
            // Scale the apparent telescope direction vector to make sure it traverses the unit sphere.
            TelescopeDirectionVector ScaledApparentVector = ApparentTelescopeDirectionVector * 2.0;
            // Shoot the scaled vector in the into the list of apparent facets
            // and use the conversuion matrix from the one it intersects
            ConvexHull::tFace CurrentFace = ApparentConvexHull.faces;
#ifdef CONVEX_HULL_DEBUGGING
            int ApparentFaces = 0;
#endif
            if (nullptr != CurrentFace)
            {
                do
                {
#ifdef CONVEX_HULL_DEBUGGING
                    ApparentFaces++;
#endif
                    // Ignore faces containing vertex 0 (nadir).
                    if ((0 == CurrentFace->vertex[0]->vnum) || (0 == CurrentFace->vertex[1]->vnum) ||
                            (0 == CurrentFace->vertex[2]->vnum))
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("Celestial to telescope - Ignoring apparent face %d", ApparentFaces);
#endif
                    }
                    else
                    {
#ifdef CONVEX_HULL_DEBUGGING
                        ASSDEBUGF("TelescopeToCelestial - Processing apparent face %d v1 %d v2 %d v3 %d", ApparentFaces,
                                  CurrentFace->vertex[0]->vnum, CurrentFace->vertex[1]->vnum,
                                  CurrentFace->vertex[2]->vnum);
#endif
                        if (RayTriangleIntersection(ScaledApparentVector,
                                                    SyncPoints[CurrentFace->vertex[0]->vnum - 1].TelescopeDirection,
                                                    SyncPoints[CurrentFace->vertex[1]->vnum - 1].TelescopeDirection,
                                                    SyncPoints[CurrentFace->vertex[2]->vnum - 1].TelescopeDirection))
                            break;
                    }
                    CurrentFace = CurrentFace->next;
                }
                while (CurrentFace != ApparentConvexHull.faces);
                if (CurrentFace == ApparentConvexHull.faces)
                {
                    // Find the three nearest points and build a transform
                    std::map<double, const AlignmentDatabaseEntry *> NearestMap;
                    for (InMemoryDatabase::AlignmentDatabaseType::const_iterator Itr = SyncPoints.begin();
                            Itr != SyncPoints.end(); Itr++)
                    {
                        NearestMap[((*Itr).TelescopeDirection - ApparentTelescopeDirectionVector).Length()] = &(*Itr);
                    }
                    // First compute local horizontal coordinates for the three sync points
                    std::map<double, const AlignmentDatabaseEntry *>::const_iterator Nearest = NearestMap.begin();
                    const AlignmentDatabaseEntry *pEntry1                                    = (*Nearest).second;
                    Nearest++;
                    const AlignmentDatabaseEntry *pEntry2 = (*Nearest).second;
                    Nearest++;
                    const AlignmentDatabaseEntry *pEntry3 = (*Nearest).second;
                    INDI::IEquatorialCoordinates RaDec1;
                    INDI::IEquatorialCoordinates RaDec2;
                    INDI::IEquatorialCoordinates RaDec3;
                    TelescopeDirectionVector ActualDirectionCosine1;
                    TelescopeDirectionVector ActualDirectionCosine2;
                    TelescopeDirectionVector ActualDirectionCosine3;
                    RaDec1.declination = pEntry1->Declination;
                    RaDec1.rightascension  = pEntry1->RightAscension;
                    RaDec2.declination = pEntry2->Declination;
                    RaDec2.rightascension  = pEntry2->RightAscension;
                    RaDec3.declination = pEntry3->Declination;
                    RaDec3.rightascension = pEntry3->RightAscension;

                    if (ApproximateMountAlignment == ZENITH)
                    {
                        INDI::IHorizontalCoordinates ActualSyncPoint1;
                        INDI::IHorizontalCoordinates ActualSyncPoint2;
                        INDI::IHorizontalCoordinates ActualSyncPoint3;
                        EquatorialToHorizontal(&RaDec1, &Position, pEntry1->ObservationJulianDate, &ActualSyncPoint1);
                        EquatorialToHorizontal(&RaDec2, &Position, pEntry2->ObservationJulianDate, &ActualSyncPoint2);
                        EquatorialToHorizontal(&RaDec3, &Position, pEntry3->ObservationJulianDate, &ActualSyncPoint3);

                        // Now express these coordinates as normalised direction vectors (a.k.a direction cosines)
                        ActualDirectionCosine1 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint1);
                        ActualDirectionCosine2 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint2);
                        ActualDirectionCosine3 = TelescopeDirectionVectorFromAltitudeAzimuth(ActualSyncPoint3);
                    }
                    else
                    {
                        ActualDirectionCosine1 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec1);
                        ActualDirectionCosine2 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec2);
                        ActualDirectionCosine3 = TelescopeDirectionVectorFromEquatorialCoordinates(RaDec3);
                    }
                    pComputedTransform = gsl_matrix_alloc(3, 3);
                    CalculateTransformMatrices(pEntry1->TelescopeDirection, pEntry2->TelescopeDirection,
                                               pEntry3->TelescopeDirection, ActualDirectionCosine1,
                                               ActualDirectionCosine2, ActualDirectionCosine3, pComputedTransform,
                                               nullptr);
                    pTransform = pComputedTransform;
                }
                else
                    pTransform = CurrentFace->pMatrix;
            }
            else
                return false;

            // OK - got an intersection - CurrentFace is pointing at the face
            gsl_vector *pGSLApparentVector = gsl_vector_alloc(3);
            gsl_vector_set(pGSLApparentVector, 0, ApparentTelescopeDirectionVector.x);
            gsl_vector_set(pGSLApparentVector, 1, ApparentTelescopeDirectionVector.y);
            gsl_vector_set(pGSLApparentVector, 2, ApparentTelescopeDirectionVector.z);
            gsl_vector *pGSLActualVector = gsl_vector_alloc(3);
            MatrixVectorMultiply(pTransform, pGSLApparentVector, pGSLActualVector);
            TelescopeDirectionVector ActualTelescopeDirectionVector;
            ActualTelescopeDirectionVector.x = gsl_vector_get(pGSLActualVector, 0);
            ActualTelescopeDirectionVector.y = gsl_vector_get(pGSLActualVector, 1);
            ActualTelescopeDirectionVector.z = gsl_vector_get(pGSLActualVector, 2);
            ActualTelescopeDirectionVector.Normalise();
            if (ApproximateMountAlignment == ZENITH)
            {
                AltitudeAzimuthFromTelescopeDirectionVector(ActualTelescopeDirectionVector, ActualAltAz);
                HorizontalToEquatorial(&ActualAltAz, &Position, ln_get_julian_from_sys(), &ActualRaDec);
            }
            else
            {
                EquatorialCoordinatesFromTelescopeDirectionVector(ActualTelescopeDirectionVector, ActualRaDec);
            }
            // libnova works in decimal degrees so conversion is needed here
            RightAscension = ActualRaDec.rightascension;
            Declination    = ActualRaDec.declination;
            gsl_vector_free(pGSLActualVector);
            gsl_vector_free(pGSLApparentVector);
            if (nullptr != pComputedTransform)
                gsl_matrix_free(pComputedTransform);
            break;
        }
    }
    //ASSDEBUGF("Telescope to Celestial - Actual Az %lf Alt %lf", ActualAltAz.azimuth, ActualAltAz.altitude);
    return true;
}

// Private methods

void BasicMathPlugin::Dump3(const char *Label, gsl_vector *pVector)
{
    ASSDEBUGF("Vector dump - %s", Label);
    ASSDEBUGF("%lf %lf %lf", gsl_vector_get(pVector, 0), gsl_vector_get(pVector, 1), gsl_vector_get(pVector, 2));
}

void BasicMathPlugin::Dump3x3(const char *Label, gsl_matrix *pMatrix)
{
    ASSDEBUGF("Matrix dump - %s", Label);
    ASSDEBUGF("Row 0 %lf %lf %lf", gsl_matrix_get(pMatrix, 0, 0), gsl_matrix_get(pMatrix, 0, 1),
              gsl_matrix_get(pMatrix, 0, 2));
    ASSDEBUGF("Row 1 %lf %lf %lf", gsl_matrix_get(pMatrix, 1, 0), gsl_matrix_get(pMatrix, 1, 1),
              gsl_matrix_get(pMatrix, 1, 2));
    ASSDEBUGF("Row 2 %lf %lf %lf", gsl_matrix_get(pMatrix, 2, 0), gsl_matrix_get(pMatrix, 2, 1),
              gsl_matrix_get(pMatrix, 2, 2));
}

/// Use gsl to compute the determinant of a 3x3 matrix
double BasicMathPlugin::Matrix3x3Determinant(gsl_matrix *pMatrix)
{
    gsl_permutation *pPermutation = gsl_permutation_alloc(3);
    gsl_matrix *pDecomp           = gsl_matrix_alloc(3, 3);
    int Signum;
    double Determinant;

    gsl_matrix_memcpy(pDecomp, pMatrix);

    gsl_linalg_LU_decomp(pDecomp, pPermutation, &Signum);

    Determinant = gsl_linalg_LU_det(pDecomp, Signum);

    gsl_matrix_free(pDecomp);
    gsl_permutation_free(pPermutation);

    return Determinant;
}

/// Use gsl to compute the inverse of a 3x3 matrix
bool BasicMathPlugin::MatrixInvert3x3(gsl_matrix *pInput, gsl_matrix *pInversion)
{
    bool Retcode                  = true;
    gsl_permutation *pPermutation = gsl_permutation_alloc(3);
    gsl_matrix *pDecomp           = gsl_matrix_alloc(3, 3);
    int Signum;

    gsl_matrix_memcpy(pDecomp, pInput);

    gsl_linalg_LU_decomp(pDecomp, pPermutation, &Signum);

    // Test for singularity
    if (0 == gsl_linalg_LU_det(pDecomp, Signum))
    {
        Retcode = false;
    }
    else
        gsl_linalg_LU_invert(pDecomp, pPermutation, pInversion);

    gsl_matrix_free(pDecomp);
    gsl_permutation_free(pPermutation);

    return Retcode;
}

/// Use gsl blas support to multiply two matrices together and put the result in a third.
/// For our purposes all the matrices should be 3 by 3.
void BasicMathPlugin::MatrixMatrixMultiply(gsl_matrix *pA, gsl_matrix *pB, gsl_matrix *pC)
{
    // Zeroise the output matrix
    gsl_matrix_set_zero(pC);

    gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, pA, pB, 0.0, pC);
}

/// Use gsl blas support to multiply a matrix by a vector and put the result in another vector
/// For our purposes the the matrix should be 3x3 and vector 3.
void BasicMathPlugin::MatrixVectorMultiply(gsl_matrix *pA, gsl_vector *pB, gsl_vector *pC)
{
    // Zeroise the output vector
    gsl_vector_set_zero(pC);

    gsl_blas_dgemv(CblasNoTrans, 1.0, pA, pB, 0.0, pC);
}

bool BasicMathPlugin::RayTriangleIntersection(TelescopeDirectionVector &Ray, TelescopeDirectionVector &TriangleVertex1,
        TelescopeDirectionVector &TriangleVertex2,
        TelescopeDirectionVector &TriangleVertex3)
{
    // Use Möller-Trumbore

    //Find vectors for two edges sharing V1
    TelescopeDirectionVector Edge1 = TriangleVertex2 - TriangleVertex1;
    TelescopeDirectionVector Edge2 = TriangleVertex3 - TriangleVertex1;

    TelescopeDirectionVector P = Ray * Edge2; // cross product
    double Determinant         = Edge1 ^ P;   // dot product
    double InverseDeterminant  = 1.0 / Determinant;

    // If the determinant is negative the triangle is backfacing
    // If the determinant is close to 0, the ray misses the triangle
    if ((Determinant > -std::numeric_limits<double>::epsilon()) &&
            (Determinant < std::numeric_limits<double>::epsilon()))
        return false;

    // I use zero as ray origin so
    TelescopeDirectionVector T(-TriangleVertex1.x, -TriangleVertex1.y, -TriangleVertex1.z);

    // Calculate the u parameter
    double u = (T ^ P) * InverseDeterminant;

    if (u < 0.0 || u > 1.0)
        //The intersection lies outside of the triangle
        return false;

    //Prepare to test v parameter
    TelescopeDirectionVector Q = T * Edge1;

    //Calculate v parameter and test bound
    double v = (Ray ^ Q) * InverseDeterminant;

    if (v < 0.0 || u + v > 1.0)
        //The intersection lies outside of the triangle
        return false;

    double t = (Edge2 ^ Q) * InverseDeterminant;

    if (t > std::numeric_limits<double>::epsilon())
    {
        //ray intersection
        return true;
    }

    // No hit, no win
    return false;
}

} // namespace AlignmentSubsystem
} // namespace INDI