1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*******************************************************************************
Copyright(c) 2021 Jasem Mutlaq. All rights reserved.
AstroTrac Mount Driver.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License version 2 as published by the Free Software Foundation.
.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*******************************************************************************/
#include "NearestMathPlugin.h"
#include <libnova/julian_day.h>
namespace INDI
{
namespace AlignmentSubsystem
{
// Standard functions required for all plugins
extern "C" {
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
NearestMathPlugin *Create()
{
return new NearestMathPlugin;
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
void Destroy(NearestMathPlugin *pPlugin)
{
delete pPlugin;
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
const char *GetDisplayName()
{
return "Nearest Math Plugin";
}
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
NearestMathPlugin::NearestMathPlugin()
{
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
NearestMathPlugin::~NearestMathPlugin()
{
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
bool NearestMathPlugin::Initialise(InMemoryDatabase *pInMemoryDatabase)
{
// Call the base class to initialise to in in memory database pointer
MathPlugin::Initialise(pInMemoryDatabase);
const auto &SyncPoints = pInMemoryDatabase->GetAlignmentDatabase();
// Clear all extended alignment points so we can re-create them.
ExtendedAlignmentPoints.clear();
IGeographicCoordinates Position;
if (!pInMemoryDatabase->GetDatabaseReferencePosition(Position))
return false;
// JM: We iterate over all the sync point and compute the celestial and telescope horizontal coordinates
// Since these are used to sort the nearest alignment points to the current target. The offsets of the
// nearest point celestial coordinates are then applied to the current target to correct for its position.
// No complex transformations used.
for (auto &oneSyncPoint : SyncPoints)
{
ExtendedAlignmentDatabaseEntry oneEntry;
oneEntry.RightAscension = oneSyncPoint.RightAscension;
oneEntry.Declination = oneSyncPoint.Declination;
oneEntry.ObservationJulianDate = oneSyncPoint.ObservationJulianDate;
oneEntry.TelescopeDirection = oneSyncPoint.TelescopeDirection;
INDI::IEquatorialCoordinates CelestialRADE {oneEntry.RightAscension, oneEntry.Declination};
INDI::IHorizontalCoordinates CelestialAltAz;
EquatorialToHorizontal(&CelestialRADE, &Position, oneEntry.ObservationJulianDate, &CelestialAltAz);
oneEntry.CelestialAzimuth = CelestialAltAz.azimuth;
oneEntry.CelestialAltitude = CelestialAltAz.altitude;
INDI::IHorizontalCoordinates TelescopeAltAz;
// Alt-Az Mounts?
if (ApproximateMountAlignment == ZENITH)
{
AltitudeAzimuthFromTelescopeDirectionVector(oneEntry.TelescopeDirection, TelescopeAltAz);
}
// Equatorial?
else
{
INDI::IEquatorialCoordinates TelescopeRADE;
EquatorialCoordinatesFromTelescopeDirectionVector(oneEntry.TelescopeDirection, TelescopeRADE);
EquatorialToHorizontal(&TelescopeRADE, &Position, oneEntry.ObservationJulianDate, &TelescopeAltAz);
}
oneEntry.TelescopeAzimuth = TelescopeAltAz.azimuth;
oneEntry.TelescopeAltitude = TelescopeAltAz.altitude;
ExtendedAlignmentPoints.push_back(oneEntry);
}
return true;
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
bool NearestMathPlugin::TransformCelestialToTelescope(const double RightAscension, const double Declination,
double JulianOffset, TelescopeDirectionVector &ApparentTelescopeDirectionVector)
{
// Get Position
IGeographicCoordinates Position;
if (!pInMemoryDatabase || !pInMemoryDatabase->GetDatabaseReferencePosition(Position))
return false;
// Get Julian date from system and apply Julian Offset if any.
double JDD = ln_get_julian_from_sys() + JulianOffset;
// Compute CURRENT horizontal coords.
INDI::IEquatorialCoordinates CelestialRADE {RightAscension, Declination};
INDI::IHorizontalCoordinates CelestialAltAz;
EquatorialToHorizontal(&CelestialRADE, &Position, JDD, &CelestialAltAz);
// Return Telescope Direction Vector directly from Celestial coordinates if we
// do not have any sync points.
if (ExtendedAlignmentPoints.empty())
{
if (ApproximateMountAlignment == ZENITH)
{
// Return Alt-Az Telescope Direction Vector For Alt-Az mounts.
ApparentTelescopeDirectionVector = TelescopeDirectionVectorFromAltitudeAzimuth(CelestialAltAz);
}
// Equatorial?
else
{
// Return RA-DE Telescope Direction Vector for Equatorial mounts.
ApparentTelescopeDirectionVector = TelescopeDirectionVectorFromEquatorialCoordinates(CelestialRADE);
}
return true;
}
// If we have sync points, then get the Nearest Point
ExtendedAlignmentDatabaseEntry nearest = GetNearestPoint(CelestialAltAz.azimuth, CelestialAltAz.altitude, true);
INDI::IEquatorialCoordinates TelescopeRADE;
// Get the nearest point in the telescope reference frame
// Alt-Az? Transform the nearest telescope direction vector to telescope Alt-Az and then to telescope RA/DE
if (ApproximateMountAlignment == ZENITH)
{
INDI::IHorizontalCoordinates TelescopeAltAz;
AltitudeAzimuthFromTelescopeDirectionVector(nearest.TelescopeDirection, TelescopeAltAz);
HorizontalToEquatorial(&TelescopeAltAz, &Position, nearest.ObservationJulianDate, &TelescopeRADE);
}
// Equatorial? Transform nearest directly to telescope RA/DE
else
{
EquatorialCoordinatesFromTelescopeDirectionVector(nearest.TelescopeDirection, TelescopeRADE);
}
// Adjust the Celestial coordinates to account for the offset between the nearest point and the telescope
// e.g. Celestial RA = 5. Nearest Point (Sky: 4, Telescope: 3)
// Means Final Telescope RA = 5 - (4-3) = 4
// So we can issue GOTO to RA ~4, and it should up near Celestial RA ~5
INDI::IEquatorialCoordinates TransformedTelescopeRADE = CelestialRADE;
TransformedTelescopeRADE.rightascension -= (nearest.RightAscension - TelescopeRADE.rightascension);
TransformedTelescopeRADE.declination -= (nearest.Declination - TelescopeRADE.declination);
// Final step is to convert transformed telescope coordinates to a direction vector
if (ApproximateMountAlignment == ZENITH)
{
INDI::IHorizontalCoordinates TransformedTelescopeAltAz;
EquatorialToHorizontal(&TransformedTelescopeRADE, &Position, JDD, &TransformedTelescopeAltAz);
ApparentTelescopeDirectionVector = TelescopeDirectionVectorFromAltitudeAzimuth(TransformedTelescopeAltAz);
}
// Equatorial?
else
{
ApparentTelescopeDirectionVector = TelescopeDirectionVectorFromEquatorialCoordinates(TransformedTelescopeRADE);
}
return true;
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
bool NearestMathPlugin::TransformTelescopeToCelestial(const TelescopeDirectionVector &ApparentTelescopeDirectionVector,
double &RightAscension, double &Declination)
{
IGeographicCoordinates Position;
if (!pInMemoryDatabase || !pInMemoryDatabase->GetDatabaseReferencePosition(Position))
return false;
double JDD = ln_get_julian_from_sys();
// Telescope Equatorial Coordinates
INDI::IEquatorialCoordinates TelescopeRADE;
// Do nothing if we don't have sync points.
if (ExtendedAlignmentPoints.empty())
{
// Alt/Az Mount?
if (ApproximateMountAlignment == ZENITH)
{
INDI::IHorizontalCoordinates TelescopeAltAz;
AltitudeAzimuthFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, TelescopeAltAz);
HorizontalToEquatorial(&TelescopeAltAz, &Position, JDD, &TelescopeRADE);
}
// Equatorial?
else
{
EquatorialCoordinatesFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, TelescopeRADE);
}
RightAscension = TelescopeRADE.rightascension;
Declination = TelescopeRADE.declination;
return true;
}
// Need to get CURRENT Telescope horizontal coords
INDI::IHorizontalCoordinates TelescopeAltAz;
// Alt/Az Mount?
if (ApproximateMountAlignment == ZENITH)
{
AltitudeAzimuthFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, TelescopeAltAz);
HorizontalToEquatorial(&TelescopeAltAz, &Position, JDD, &TelescopeRADE);
}
// Equatorial?
else
{
EquatorialCoordinatesFromTelescopeDirectionVector(ApparentTelescopeDirectionVector, TelescopeRADE);
EquatorialToHorizontal(&TelescopeRADE, &Position, JDD, &TelescopeAltAz);
}
// Find the nearest point to our telescope now
ExtendedAlignmentDatabaseEntry nearest = GetNearestPoint(TelescopeAltAz.azimuth, TelescopeAltAz.altitude, false);
// Now get the nearest telescope in equatorial coordinates.
INDI::IEquatorialCoordinates NearestTelescopeRADE;
if (ApproximateMountAlignment == ZENITH)
{
INDI::IHorizontalCoordinates NearestTelescopeAltAz {nearest.TelescopeAzimuth, nearest.TelescopeAltitude};
HorizontalToEquatorial(&NearestTelescopeAltAz, &Position, nearest.ObservationJulianDate, &NearestTelescopeRADE);
}
// Equatorial?
else
{
EquatorialCoordinatesFromTelescopeDirectionVector(nearest.TelescopeDirection, NearestTelescopeRADE);
}
// Adjust the Telescope coordinates to account for the offset between the nearest point and the telescope
// e.g. Telescope RA = 5. Nearest Point (Target: 4, Telescope: 3)
// Means Final Telescope RA = 5 + (4-3) = 6
// So a telescope reporting ~5 hours should actually be pointing to ~6 hours in the sky.
INDI::IEquatorialCoordinates TransformedCelestialRADE = TelescopeRADE;
TransformedCelestialRADE.rightascension += (nearest.RightAscension - NearestTelescopeRADE.rightascension);
TransformedCelestialRADE.declination += (nearest.Declination - NearestTelescopeRADE.declination);
RightAscension = TransformedCelestialRADE.rightascension;
Declination = TransformedCelestialRADE.declination;
return true;
}
//////////////////////////////////////////////////////////////////////////////////////
///
//////////////////////////////////////////////////////////////////////////////////////
ExtendedAlignmentDatabaseEntry NearestMathPlugin::GetNearestPoint(const double Azimuth, const double Altitude,
bool isCelestial)
{
ExtendedAlignmentDatabaseEntry nearest;
double distance = 1e6;
for (auto &oneEntry : ExtendedAlignmentPoints)
{
double oneDistance = 0;
if (isCelestial)
oneDistance = SphereUnitDistance(Azimuth, oneEntry.CelestialAzimuth, Altitude, oneEntry.CelestialAltitude);
else
oneDistance = SphereUnitDistance(Azimuth, oneEntry.TelescopeAzimuth, Altitude, oneEntry.TelescopeAltitude);
if (oneDistance < distance)
{
nearest = oneEntry;
distance = oneDistance;
}
}
return nearest;
}
//////////////////////////////////////////////////////////////////////////////////////
/// Using haversine: http://en.wikipedia.org/wiki/Haversine_formula
//////////////////////////////////////////////////////////////////////////////////////
double NearestMathPlugin::SphereUnitDistance(double theta1, double theta2, double phi1, double phi2)
{
double sqrt_haversin_lat = sin(((phi2 - phi1) / 2) * (M_PI / 180));
double sqrt_haversin_long = sin(((theta2 - theta1) / 2) * (M_PI / 180));
return (2 *
asin(sqrt((sqrt_haversin_lat * sqrt_haversin_lat) + cos(phi1 * (M_PI / 180)) * cos(phi2 * (M_PI / 180)) *
(sqrt_haversin_long * sqrt_haversin_long))));
}
} // namespace AlignmentSubsystem
} // namespace INDI
|