1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
/* logsum.c
* EPN, Fri Sep 7 16:44:58 2007
*
* The FLogsum() function used for scaled integer log sums
* in many Infernal dp functions. This was ripped out of HMMER3
* development code and Infernalized.
*
* Sean's notes from HMMER 3's logsum.c:
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Exegesis:
*
* Internally, HMMER3 profile scores are in nats: floating point
* log-odds probabilities, with the log odds taken relative to
* background residue frequencies, and the log to the base e.
*
* The Forward algorithm needs to calculate sums of probabilities.
* Given two log probabilities s1 and s2, where s1 = \log
* \frac{p_1}{f_1}, and s2 = \log \frac{p_2}{f_2}, we need to
* calculate s3 = \log \frac{p_1 + p_2}{f_3}.
*
* The Forward algorithm guarantees that f_1 = f_2 = f_3, because it
* is always concerned with summing terms that describe different
* parses of the same target sequence prefix, and the product of the
* background frequencies for the same sequence prefix is a constant.
*
* The naive solution is s3 = log(e^{s1} + e^{s2}). This requires
* expensive calls to log() and exp().
*
* A better solution is s3 = s1 + log(1 + e^{s2-s1}). s1 should be the
* greater, so s2-s1 is negative. For sufficiently small s2 << s1,
* e^{s2-s1} becomes less than the machine's FLT_EPSILON, and s3 ~=
* s1. (This is at about s2-s1 < -15.9, for the typical FLT_EPSILON of
* 1.2e-7.)
*
* With some loss of accuracy, we can precalculate log(1 + e^{s2-s1})
* for a discretized range of differences (s2-s1), and compute s3 = s1
* + table_lookup(s2-s1). This is what HMMER's p7_FLogsum() function
* does.
*
* Contents:
*
* SRE, Wed Jul 11 11:00:57 2007 [Janelia]
* SVN $Id$
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* EPN, Fri Sep 7 17:01:49 2007
*
* Following changes made for Infernal (which uses bits not nats):
* o p7_ prefixes dropped.
* o FLogsum() duplicated, and duplicate renamed to LogSum2() to match
* existing calls in Infernal
* o magic 15.7 number changed to 23 (e^-15.7 = 1.5e-7) (2^-23. = 1.2e-7),
* not sure if this is right b/c I thought epsilon was 1.2e-7 (which != 1.5e-7)
* o changed exp() calls to sreEXP2() calls.
* o changed p7_IMPOSSIBLE to -INFTY (both are same: -987654321)
* o changed p7_ILogsumInit to init_ilogsum() to match old func calls.
*
* NOTE: there is no FLogSumInit() function in old Infernal.
*/
#include "config.h"
#include <math.h>
#include <assert.h>
#include "funcs.h"
#include "structs.h"
#if 1
static int ilogsum_lookup[LOGSUM_TBL];
void
init_ilogsum(void)
{
static int firsttime = TRUE;
if (!firsttime) return;
firsttime = FALSE;
int i;
for (i = 0; i < LOGSUM_TBL; i++)
ilogsum_lookup[i] = rint(INTSCALE * (sreLOG2(1.+sreEXP2((double) -i/INTSCALE))));
}
int
ILogsum(int s1, int s2)
{
const int max = ESL_MAX(-INFTY, ESL_MAX(s1, s2));
const int min = ESL_MIN(s1, s2);
return (min <= -INFTY || (max-min) >= LOGSUM_TBL) ? max : max + ilogsum_lookup[max-min];
}
/* guaranteed s1 >= -INFTY, s2 >= -INFTY */
int
ILogsumNI(int s1, int s2)
{
ESL_DASSERT1((s1 > -INFTY));
ESL_DASSERT1((s2 > -INFTY));
/*assert(s1 > -INFTY);
assert(s2 > -INFTY);*/
const int max = ESL_MAX(s1, s2);
const int min = ESL_MIN(s1, s2);
return ((max-min) >= LOGSUM_TBL) ? max : max + ilogsum_lookup[max-min];
/* about 10% slower
if(s1 > s2)
return ((s1-s2) >= LOGSUM_TBL) ? s1 : s1 + ilogsum_lookup[s1-s2];
else
return ((s2-s1) >= LOGSUM_TBL) ? s2 : s2 + ilogsum_lookup[s2-s1];
*/
}
/* guaranteed s1 >= -INFTY, s2 >= -INFTY */
int
ILogsumNI_diff(int s1a, int s1b, int s2a, int s2b, int db)
{
/* db = s1b - s2b */
ESL_DASSERT1((s1a > -INFTY));
ESL_DASSERT1((s1b > -INFTY));
ESL_DASSERT1((s2a > -INFTY));
ESL_DASSERT1((s2b > -INFTY));
/*const int d = s1a-s2a+db;
if (d >= LOGSUM_TBL) return s1a + s1b;
else if (d > 0) return s1a + s1b + ilogsum_lookup[d];
else if (d <= -LOGSUM_TBL) return s2a + s2b;
else return s2a + s2b + ilogsum_lookup[-d];*/
const int d = s1a-s2a+db;
if(d > 0)
return (d >= LOGSUM_TBL) ? s1a + s1b : s1a + s1b + ilogsum_lookup[d];
else
return (d <= LOGSUM_TBL) ? s2a + s2b : s2a + s2b + ilogsum_lookup[-d];
}
static float flogsum_lookup[LOGSUM_TBL];
void
FLogsumInit(void)
{
static int firsttime = TRUE;
if (!firsttime) return;
firsttime = FALSE;
int i;
for (i = 0; i < LOGSUM_TBL; i++)
flogsum_lookup[i] = sreLOG2(1. + sreEXP2((double) -i / INTSCALE));
return;
}
float
LogSum2(float s1, float s2)
{
const float max = ESL_MAX(s1, s2);
const float min = ESL_MIN(s1, s2);
return (min == -eslINFINITY || (max-min) >= 23.f) ? max : max + flogsum_lookup[(int)((max-min)*INTSCALE)];
}
/* yes LogSum2 and FLogsum are identical, this is for backwards compatibility */
float
FLogsum(float s1, float s2)
{
const float max = ESL_MAX(s1, s2);
const float min = ESL_MIN(s1, s2);
#if 0
return (min == -eslINFINITY || (max-min) >= 23.f) ? max : max + sreLOG2(1.0 + sreEXP2(min-max)); /* EPN: While debugging. Replaces logsum table with analytical calculation. Remember to remove! */
#endif
return (min == -eslINFINITY || (max-min) >= 23.f) ? max : max + flogsum_lookup[(int)((max-min)*INTSCALE)];
}
#endif /* USE_NEWLOGSUM*/
#if 0
/**********************************************************************************
* OLD LOG SUM FUNCTIONS *
**********************************************************************************/
/* Function: ILogsum()
*
* Purpose: Return the scaled integer log probability of
* the sum of two probabilities p1 and p2, where
* p1 and p2 are also given as scaled log probabilities.
*
* log(exp(p1)+exp(p2)) = p1 + log(1 + exp(p2-p1)) for p1 > p2
*
* For speed, builds a lookup table the first time it's called.
* LOGSUM_TBL is set to 20000 by default, in config.h.
*
* Because of the one-time initialization, we have to
* be careful in a multithreaded implementation... hence
* the use of pthread_once(), which forces us to put
* the initialization routine and the lookup table outside
* ILogsum(). (Thanks to Henry Gabb at Intel for pointing
* out this problem.)
*
* Args: p1,p2 -- scaled integer log_2 probabilities to be summed
* in probability space.
*
* Return: scaled integer log_2 probability of the sum.
*/
static int ilogsum_lookup[LOGSUM_TBL];
static void
init_ilogsum(void)
{
static int firsttime = 1;
if (firsttime) return;
firsttime = FALSE;
int i;
for (i = 0; i < LOGSUM_TBL; i++)
ilogsum_lookup[i] = (int) (INTSCALE * 1.44269504 *
(log(1.+exp(0.69314718 * (float) -i/INTSCALE))));
}
int
ILogsum(int s1, int s2)
{
if(s1 == -INFTY) return s2; /* EPN */
if(s2 == -INFTY) return s1; /* EPN */
const int diff = s1-s2;
if (diff >= LOGSUM_TBL) return s1;
else if (diff > 0) return s1 + ilogsum_lookup[diff];
else if (diff <= -LOGSUM_TBL) return s2;
else return s2 + ilogsum_lookup[-diff];
}
/* guaranteed s1 >= -INFTY, p2 >= -INFTY */
int
ILogsumNI(int s1, int s2)
{
ESL_DASSERT1((s1 >= -INFTY));
ESL_DASSERT1((s2 >= -INFTY));
const int diff = s1-s2;
if (diff >= LOGSUM_TBL) return s1;
else if (diff <= -LOGSUM_TBL) return s2;
else if (diff > 0) return s1 + ilogsum_lookup[diff];
else return s2 + ilogsum_lookup[-diff];
}
/* Function: LogSum2()
*
* Purpose: Returns the log_2 of the sum of two log_2 probabilities.
* log(exp(p1)+exp(p2)) = p1 + log(1 + exp(p2-p1)) for p1 > p2
* Note that this is in log_2 space.
*/
float
LogSum2(float p1, float p2)
{
if (p1 > p2)
return (p1-p2 > 50.) ? p1 : p1 + sreLOG2(1. + pow(2.,(p2-p1)));
else
return (p2-p1 > 50.) ? p2 : p2 + sreLOG2(1. + pow(2.,(p1-p2)));
}
#endif /* USE_OLDLOGSUM */
/* EPN, Fri Sep 7 16:57:23 2007
* Left in benchmark driver for potential future use, not used now though.
*/
/*****************************************************************
* Benchmark driver.
*****************************************************************/
#ifdef p7LOGSUM_BENCHMARK
/* gcc -o benchmark -g -O2 -I. -L. -I../easel -L../easel -Dp7LOGSUM_BENCHMARK logsum.c -leasel -lm
* ./benchmark
*/
/* All times in units of nanoseconds/iteration: cpu time * 10.
* All times derived from 1e8 iterations (-N 100000000) unless stated.
* All runs on my workstation, a 3.2GHz Xeon.
* Times in brackets are difference from baseline.
* To get baselines, comment out the appropriate Logsum() call and recompile.
*
* Floating point: gcc -g -O2
* ---------
* baseline: 274.5
* p7_FLogsum() 293.2 [18.7]
*
* Integer version:
* baseline: 269.9
* p7_ILogsum() 271.8 [1.9]
*/
#include "p7_config.h"
#include <math.h>
#include "easel.h"
#include "esl_getopts.h"
#include "esl_random.h"
#include "esl_stopwatch.h"
#include "hmmer.h"
static ESL_OPTIONS options[] = {
/* name type default env range toggles reqs incomp help docgroup*/
{ "-h", eslARG_NONE, NULL, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 },
{ "-i", eslARG_NONE, NULL, NULL, NULL, NULL, NULL, NULL, "run the integer version", 0 },
{ "-v", eslARG_NONE, NULL, NULL, NULL, NULL, NULL, NULL, "be verbose: show individual results", 0 },
{ "-N", eslARG_INT,"100000000",NULL,"n>0", NULL, NULL, NULL, "number of trials", 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static char usage[] = "[-options]";
static char banner[] = "benchmark driver for logsum functions()";
static float
naive1(float s1, float p2)
{
return log(exp(s1) + exp(p2));
}
static float
naive2(float s1, float s2)
{
if (s1 > s2) return s1 + log(1 + exp(s2-s1));
else return s2 + log(1 + exp(s1-s2));
}
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *r = esl_randomness_Create(42);
ESL_STOPWATCH *w = esl_stopwatch_Create();
int N = esl_opt_GetInteger(go, "-N");
int i;
if (esl_opt_GetBoolean(go, "-i"))
{
int x, z;
p7_ILogsumInit();
esl_stopwatch_Start(w);
for (z = 0, i = 0; i < N; i++)
{
x = z - esl_random(r) * 7000;
if (esl_opt_GetBoolean(go, "-v"))
printf("%d %d %d \n", z, x, p7_ILogsum(x, z));
z = p7_ILogsum(x,z);
z -= 119;
}
esl_stopwatch_Stop(w);
}
else
{
float x, z;
p7_FLogsumInit();
esl_stopwatch_Start(w);
for (z = 0., i = 0; i < N; i++)
{
x = z - esl_random(r) * 7.;
if (esl_opt_GetBoolean(go, "-v"))
printf("%g %g %g %g %g\n", z, x, p7_FLogsum(x, z), naive1(x,z), fabs(p7_FLogsum(x, z) - naive1(x,z)));
z = p7_FLogsum(x, z);
/* z = naive2(x,y); */
z -= 0.1187; /* empirically balancing z near 0 */
}
esl_stopwatch_Stop(w);
}
esl_stopwatch_Display(stdout, w, "# CPU time: ");
esl_stopwatch_Destroy(w);
esl_randomness_Destroy(r);
esl_getopts_Destroy(go);
return 0;
}
#endif /*p7LOGSUM_BENCHMARK*/
|