File: rmark-create.c

package info (click to toggle)
infernal 1.1.5-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,208 kB
  • sloc: ansic: 230,749; perl: 14,433; sh: 6,147; makefile: 3,071; python: 1,247
file content (1428 lines) | stat: -rw-r--r-- 66,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
/* Construct a training alignment/test sequences set from an MSA.
 * Modified from HMMER's create-profmark.c. 
 * 
 * Usage:
 *   ./rmark-create <basename> <msa Stockholm file> <FASTA db>
 * For example:
 *   ./rmark-create rmark3 /misc/data0/databases/Rfam/Rfam.seed /misc/data0/databases/rfamseq.fasta
 *
 * There are three types of sequences:
 * 1. positives:
 * - test sequences from the input <msa Stockholm file>.  
 * 2. negatives: 
 * - long pseudo-chromosome sequences, created by shuffling
 *   randomly chosen subsequences from <FASTA db>.
 * 3. benchmark sequences: 
 * - negative sequences with >= 0 positives embedded 
 *   within them
 *
 * Six output files are generated:
 *   <basename>.tbl  - table summarizing the benchmark
 *   <basename>.msa  - MSA queries, stockholm format
 *   <basename>.fa   - benchmark sequences, fasta format
 *   <basename>.pos  - table summarizing positive test set;
 *                     their locations in the benchmark seqs
 *   <basename>.pfa  - positive sequences, fasta format
 *   <basename>.ppos - table summarizing positive test seqs;
 *                     their locations in the .pfa file
 * 
 * The .pfa and .ppos files are for running a positive-only version
 * of the benchmark, by searching only the positive test set. This
 * is useful for quickly determining how many positive sequences 
 * pass a filter strategy, for example.
 * 
 * EPN, Tue Jul  6 09:48:24 2010
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "easel.h"
#include "esl_alphabet.h"
#include "esl_composition.h"
#include "esl_distance.h"
#include "esl_fileparser.h"
#include "esl_getopts.h"
#include "esl_hmm.h"
#include "esl_msa.h"
#include "esl_msafile.h"
#include "esl_msacluster.h"
#include "esl_msaweight.h"
#include "esl_random.h"
#include "esl_randomseq.h"
#include "esl_sq.h"
#include "esl_sqio.h"
#include "esl_stack.h"
#include "esl_vectorops.h"

static char banner[] = "construct a rmark benchmark profile training/test set";
static char usage1[]  = "[options] <basename> <msafile> <hmmfile>";
static char usage2[]  = "[options] -S    <basename> <msafile> <seqdb>";
static char usage3[]  = "[options] --iid <basename> <msafile>\n";

#define SHUF_OPTS "--mono,--di,--markov0,--markov1"   /* toggle group, seq shuffling options          */

static ESL_OPTIONS options[] = {
  /* name       type        default env   range togs  reqs  incomp      help                                                   docgroup */
  { "-h",       eslARG_NONE,  FALSE, NULL, NULL, NULL,NULL, NULL,            "help; show brief info on version and usage",              1 },
  { "-S",       eslARG_NONE,  FALSE, NULL, NULL, NULL,NULL, NULL,            "do not generate with an HMM, shuffle seqs from <seqdb>", 1 },
  { "-1",       eslARG_REAL, "0.60", NULL,"0<x<=1.0",NULL,NULL,NULL,         "require all test seqs to have < x id to training",        1 },
  { "-2",       eslARG_REAL, "0.70", NULL,"0<x<=1.0",NULL,NULL,NULL,         "require all test seqs to have < x id to each other",      1 },
  { "-F",       eslARG_REAL, "0.70", NULL,"0<x<=1.0",NULL,NULL,NULL,         "filter out seqs <x*average length",                       1 },
  { "-N",       eslARG_INT,    "10", NULL, NULL,     NULL,NULL,NULL,         "number of benchmark seqs",                            1 },
  { "-L",       eslARG_INT,"1000000",NULL,"n>0",     NULL,NULL,NULL,         "full length of benchmark seqs prior to test seq embedding",               1 },
  { "-C",       eslARG_INT,   "1000",NULL,"n>0",     NULL,NULL,"--iid",      "length of of <seqdb> seqs to extract and shuffle when making test seqs",  1 },
  { "-X",       eslARG_REAL, "0.05", NULL,"0<x<=1.0",NULL,NULL,NULL,         "maximum fraction of total test seq covered by positives", 1 },
  { "-R",       eslARG_INT,     "5", NULL,"n>0",     NULL,NULL,NULL,         "minimum number of training seqs per family",              1 },
  { "-E",       eslARG_INT,     "1", NULL,"n>0",     NULL,NULL,NULL,         "minimum number of test     seqs per family",              1 },

  /* Options controlling negative segment randomization method  */
  { "--iid",     eslARG_NONE,    FALSE, NULL, NULL, NULL, NULL, "-S",      "generate random iid sequence for negatives",                2 },
  { "--mono",    eslARG_NONE,    FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, shuffle preserving monoresidue composition",                2 },
  { "--di",      eslARG_NONE,    FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, shuffle preserving mono- and di-residue composition",       2 },
  { "--markov0", eslARG_NONE,    FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, generate with 0th order Markov properties per input",       2 },
  { "--markov1", eslARG_NONE,    FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, generate with 1st order Markov properties per input",       2 },

  /* Options forcing which alphabet we're working in (normally autodetected) */
  { "--amino",  eslARG_NONE,  FALSE, NULL, NULL, NULL,NULL,"--dna,--rna",    "<msafile> contains protein alignments",                   3 },
  { "--dna",    eslARG_NONE,  FALSE, NULL, NULL, NULL,NULL,"--amino,--rna",  "<msafile> contains DNA alignments",                       3 },
  { "--rna",    eslARG_NONE,  FALSE, NULL, NULL, NULL,NULL,"--amino,--dna",  "<msafile> contains RNA alignments",                       3 },

  /* Other options */
  { "--minDPL", eslARG_INT,   "100", NULL, NULL, NULL, NULL, NULL,           "minimum segment length for DP shuffling",                 4 },
  { "--seed",   eslARG_INT,     "0", NULL, NULL, NULL, NULL, NULL,           "specify random number generator seed",                    4 },
  { "--sub",    eslARG_NONE,  FALSE, NULL, NULL, NULL, NULL, "--sample",     "look for train/test in msa subsets via greedy algorithm", 4 },
  { "--sample", eslARG_INT,   FALSE, NULL, NULL, NULL, NULL, "-sub",         "look for train/test in msa subsets via sampling, <n> samples", 4},
  { "--skip",   eslARG_NONE,  FALSE, NULL, NULL, NULL, NULL, NULL,           "w/--sub or --sample, skip partition test", 4 },
  { "--xtest",  eslARG_NONE,  FALSE, NULL, NULL, NULL, NULL, NULL,           "w/--sub or --sample, maximize |test|, not |train|+|test|",  4 },
  { "--nfile",  eslARG_OUTFILE,FALSE,NULL, NULL, NULL, NULL, NULL,           "save benchmark database *without* positives to <f>",  4 },
  { "--tfile",  eslARG_OUTFILE,FALSE,NULL, NULL, NULL, NULL, NULL,           "save orig/train/test alignments with renamed seqs to <f>",  4 },

  { 0,0,0,0,0,0,0,0,0,0 },
};

struct cfg_s {
  ESL_ALPHABET   *abc;          /* biological alphabet             */
  ESL_RANDOMNESS *r;            /* random number generator         */
  ESL_HMM        *hmm;          /* HMM for generating background seqs */
  double          fragfrac;	/* seqs less than x*avg length are removed from alignment  */
  double          idthresh1;	/* fractional identity threshold for train/test split      */
  double          idthresh2;	/* fractional identity threshold for selecting test seqs   */
  int             min_ntrain;	/* minimum number of sequences in the training set */
  int             min_ntest;	/* minimum number of sequences in the test set */

  FILE           *out_msafp;	/* output: training MSAs  */
  FILE           *out_bmkfp;	/* output: benchmark sequences */
  FILE           *out_posfp;	/* output: positive sequences */
  FILE           *possummfp;    /* output: summary table of the positive test set in the benchmark seqs */
  FILE           *ppossummfp;   /* output: summary table of the positive-only test set */
  FILE           *negsummfp;    /* output: summary table of the negative test set */
  FILE           *tblfp;	/* output: summary table of the training set alignments */
  FILE           *nseqfp;	/* output: (optional) negative sequences only (without embedded positives) */
  FILE           *tfp;	        /* output: (optional) alignments with train/test seqs renamed */

  ESL_SQFILE     *dbfp;   	/* source database for negatives                           */
  int             db_nseq;	/* # of sequences in the db                                */
  int             nneg;         /* number of negative long sequences we'll create          */
  int             negL;         /* length of long negative sequences before test seqs get embedded */
  int             negchunkL;    /* length of each chunk that make up the long negative sequences */

  double          fq[20];	/* background frequency distribution, if we're making iid negatives */
};

static int process_dbfile       (struct cfg_s *cfg, char *dbfile, int dbfmt);
static int remove_fragments     (struct cfg_s *cfg, ESL_MSA *msa, ESL_MSA **ret_filteredmsa, int *ret_nfrags);
static int separate_sets        (struct cfg_s *cfg, ESL_MSA *msa, int **ret_i_am_train, int **ret_i_am_test);
static int find_sets_greedily   (struct cfg_s *cfg, ESL_MSA *msa, int do_maxtest, int **ret_i_am_train, int **ret_i_am_test);
static int find_sets_by_sampling(struct cfg_s *cfg, ESL_MSA *msa, int nsamples, int do_maxtest, int **ret_i_am_train, int **ret_i_am_test);
static int synthesize_negatives_and_embed_positives(ESL_GETOPTS *go, struct cfg_s *cfg, ESL_SQ **posseqs, int npos);
static int set_random_segment  (ESL_GETOPTS *go, struct cfg_s *cfg, FILE *logfp, ESL_DSQ *dsq, int L);
static void read_hmmfile(char *filename, ESL_HMM **ret_hmm);

static void
cmdline_failure(char *argv0, char *format, ...)
{
  va_list argp;
  va_start(argp, format);
  vfprintf(stderr, format, argp);
  va_end(argp);
  esl_usage(stdout, argv0, usage1);
  esl_usage(stdout, argv0, usage2);
  esl_usage(stdout, argv0, usage3);
  printf("\nTo see more help on available options, do %s -h\n\n", argv0);
  exit(1);
}

static void
cmdline_help(char *argv0, ESL_GETOPTS *go) 
{
  esl_banner(stdout, argv0, banner);
  esl_usage (stdout, argv0, usage1);
  esl_usage (stdout, argv0, usage2);
  puts("\n where general options are:");
  esl_opt_DisplayHelp(stdout, go, 1, 2, 80);
  puts("\n options controlling segment randomization method:");
  esl_opt_DisplayHelp(stdout, go, 2, 2, 80);
  puts("\n options declaring a particular alphabet:");
  esl_opt_DisplayHelp(stdout, go, 3, 2, 80);
  puts("\n other options:");
  esl_opt_DisplayHelp(stdout, go, 4, 2, 80);
  exit(0);
}


int
main(int argc, char **argv)
{
  ESL_GETOPTS  *go      = NULL;	/* command line configuration      */
  struct cfg_s  cfg;     	/* application configuration       */
  char         *basename= NULL;	/* base of the output file names   */
  char         *alifile = NULL;	/* alignment file name             */
  char         *dbfile  = NULL;	/* name of seq db file             */
  char         *hmmfile  = NULL;/* name of hmm file                */
  char          outfile[256];	/* name of an output file          */
  int           alifmt;		/* format code for alifile         */
  int           dbfmt;		/* format code for dbfile          */
  ESL_MSAFILE  *afp     = NULL;	/* open alignment file             */
  ESL_MSA      *origmsa = NULL;	/* one multiple sequence alignment */
  ESL_MSA      *msa     = NULL;	/* MSA after frags are removed     */
  ESL_MSA      *trainmsa= NULL;	/* training set, aligned           */
  char         *tmpstr  = NULL; /* #=RF annotation line            */
  ESL_SQ       *train_consensus = NULL;
  ESL_MSA      *tmpmsa= NULL;	/* tmp aligned training/testing set, used if --tfile */
  int          *i_am_train = NULL; /* [0..msa->nseq-1]: 1 if train seq, 0 if not */
  int          *i_am_test  = NULL; /* [0..msa->nseq-1]: 1 if test  seq, 0 if not */
  int           nfrags;		/* # of fragments removed          */
  int           ntestseq;       /* # of test  sequences for cur fam */
  int           ntrainseq;      /* # of train sequences for cur fam */
  int           nali;		/* number of alignments read       */
  int           npos;		/* number of positive test sequences stored */
  int           npos_this_msa;	/* number of positive test sequences stored for current msa */
  ESL_SQ      **posseqs=NULL;   /* all the test seqs, to be embedded */
  int64_t       poslen_total;   /* total length of all positive seqs */
  double        avgid;
  double        pctid;
  void         *ptr;
  int           i, traini, testi;
  int           status;		/* easel return code               */
  
  /* Parse command line */
  go = esl_getopts_Create(options);
  if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK) cmdline_failure(argv[0], "Failed to parse command line: %s\n", go->errbuf);
  if (esl_opt_VerifyConfig(go)               != eslOK) cmdline_failure(argv[0], "Error in app configuration:   %s\n", go->errbuf);
  if (esl_opt_GetBoolean(go, "-h"))                    cmdline_help(argv[0], go);

  if ((  esl_opt_GetBoolean(go, "--iid") && esl_opt_ArgNumber(go) != 2) || 
      (! esl_opt_GetBoolean(go, "--iid") && esl_opt_ArgNumber(go) != 3)) { 
    cmdline_failure(argv[0], "Incorrect number of command line arguments\n");
  }
  basename = esl_opt_GetArg(go, 1); 
  alifile  = esl_opt_GetArg(go, 2);
  if(! esl_opt_GetBoolean(go, "--iid")) { 
    if(esl_opt_GetBoolean(go, "-S")) dbfile  = esl_opt_GetArg(go, 3);
    else                             hmmfile = esl_opt_GetArg(go, 3);
  }
  alifmt   = eslMSAFILE_STOCKHOLM;
  dbfmt    = eslSQFILE_FASTA;

  /* check for incompatible option combinations */
  if((! esl_opt_IsOn(go, "--sub")) && (! esl_opt_IsOn(go, "--sample"))) { 
    if(esl_opt_IsOn(go, "--skip"))  cmdline_failure(argv[0], "--skip requires --sub or --sample");
    if(esl_opt_IsOn(go, "--xtest")) cmdline_failure(argv[0], "--xtest requires --sub or --sample");
  }

  /* Set up the configuration structure shared amongst functions here */
  if (esl_opt_IsDefault(go, "--seed"))   cfg.r = esl_randomness_CreateTimeseeded();
  else                                   cfg.r = esl_randomness_Create(esl_opt_GetInteger(go, "--seed"));
  cfg.abc        = NULL;		          /* until we open the MSA file, below */
  cfg.hmm        = NULL;
  cfg.fragfrac   = esl_opt_GetReal(go, "-F");
  cfg.idthresh1  = esl_opt_GetReal(go, "-1");
  cfg.idthresh2  = esl_opt_GetReal(go, "-2");
  cfg.min_ntrain = esl_opt_GetInteger(go, "-R");
  cfg.min_ntest  = esl_opt_GetInteger(go, "-E");
  cfg.nneg       = esl_opt_GetInteger(go, "-N");
  cfg.negL       = esl_opt_GetInteger(go, "-L");
  cfg.negchunkL  = esl_opt_GetInteger(go, "-C");

  /* Open the output files */ 
  if (snprintf(outfile, 256, "%s.msa", basename) >= 256)   esl_fatal("Failed to construct output MSA file name");
  if ((cfg.out_msafp = fopen(outfile, "w"))      == NULL)  esl_fatal("Failed to open MSA output file %s\n", outfile);
  if (snprintf(outfile, 256, "%s.fa",  basename) >= 256)   esl_fatal("Failed to construct output FASTA file name");
  if ((cfg.out_bmkfp = fopen(outfile, "w"))      == NULL)  esl_fatal("Failed to open FASTA output file %s\n", outfile);
  if (snprintf(outfile, 256, "%s.pfa",  basename) >= 256)  esl_fatal("Failed to construct output positive FASTA file name");
  if ((cfg.out_posfp = fopen(outfile, "w"))      == NULL)  esl_fatal("Failed to open positive FASTA output file %s\n", outfile);
  if (snprintf(outfile, 256, "%s.pos", basename) >= 256)   esl_fatal("Failed to construct pos test set summary file name");
  if ((cfg.possummfp = fopen(outfile, "w"))      == NULL)  esl_fatal("Failed to open pos test set summary file %s\n", outfile);
  if (snprintf(outfile, 256, "%s.ppos", basename) >= 256)  esl_fatal("Failed to construct pos-only test set summary file name");
  if ((cfg.ppossummfp = fopen(outfile, "w"))      == NULL) esl_fatal("Failed to open pos-only test set summary file %s\n", outfile);
  if (snprintf(outfile, 256, "%s.tbl", basename) >= 256)   esl_fatal("Failed to construct benchmark table file name");
  if ((cfg.tblfp     = fopen(outfile, "w"))      == NULL)  esl_fatal("Failed to open benchmark table file %s\n", outfile);
  if (esl_opt_GetBoolean(go, "-S")) { 
    if (snprintf(outfile, 256, "%s.neg", basename) >= 256)  esl_fatal("Failed to construct neg test set summary file name");
    if ((cfg.negsummfp = fopen(outfile, "w"))      == NULL) esl_fatal("Failed to open neg test set summary file %s\n", outfile);
  }
  else cfg.negsummfp = NULL;
  if (esl_opt_IsOn(go, "--nfile")) { 
    if((cfg.nseqfp = fopen(esl_opt_GetString(go, "--nfile"), "w")) == NULL) esl_fatal("Failed to open negative sequence file %s\n", esl_opt_GetString(go, "--nfile"));
  }
  else cfg.nseqfp = NULL;
  if (esl_opt_IsOn(go, "--tfile")) { 
    if((cfg.tfp = fopen(esl_opt_GetString(go, "--tfile"), "w")) == NULL) esl_fatal("Failed to open alignment file %s\n", esl_opt_GetString(go, "--tfile"));
  }
  else cfg.tfp = NULL;

  /* Open the MSA file */
  if      (esl_opt_GetBoolean(go, "--amino"))   cfg.abc = esl_alphabet_Create(eslAMINO);
  else if (esl_opt_GetBoolean(go, "--dna"))     cfg.abc = esl_alphabet_Create(eslDNA);
  else if (esl_opt_GetBoolean(go, "--rna"))     cfg.abc = esl_alphabet_Create(eslRNA);
  if((status = esl_msafile_Open(&(cfg.abc), alifile, NULL, alifmt, NULL, &afp)) != eslOK) { 
    esl_msafile_OpenFailure(afp, status);
  }

  if (cfg.abc->type == eslAMINO) esl_composition_SW34(cfg.fq);
  else                           esl_vec_DSet(cfg.fq, cfg.abc->K, 1.0 / (double) cfg.abc->K);

  /* Open and read the HMM file of database file, depending on if -S was enabled or not */
  if(hmmfile != NULL) read_hmmfile(hmmfile, &(cfg.hmm));
  if(dbfile != NULL)  process_dbfile(&cfg, dbfile, dbfmt);

  /* Read and process MSAs one at a time  */
  nali = 0; 
  npos = 0;
  poslen_total = 0;
  while ((status = esl_msafile_Read(afp, &origmsa)) == eslOK)
  {
      npos_this_msa = 0;
      if(origmsa->name == NULL) esl_fatal("All msa's must have a valid name (#=GC ID), alignment %d does not.", nali);
      esl_msa_ConvertDegen2X(origmsa); 

      remove_fragments(&cfg, origmsa, &msa, &nfrags);

      /* Test 1: can we define train/test sets such that our thresholds 
       *         are satisfied (most similar train/test pair < cfg->idthresh1,
       *         and most similar test/test pair < cfg->idthresh2) and 
       *         _all_ the msa's sequences are either:
       *  - in the training set OR
       *  - in the test set OR
       *  - more than cfg->idthresh2 similar to >=1 sequences in the test set
      */
      if(! esl_opt_GetBoolean(go, "--skip")) { 
	separate_sets (&cfg, msa, &i_am_train, &i_am_test);
	ntrainseq = esl_vec_ISum(i_am_train, msa->nseq);
	ntestseq  = esl_vec_ISum(i_am_test,  msa->nseq);
      }
      else { /* --skip enabled, we skipped test 1 */
	ntestseq = ntrainseq = 0;
      }

      /* if --sub or --sample, check if we should look for subsets of 
       * the seqs in the msa that satisfy our thresholds */
      if((esl_opt_IsOn(go, "--sub") || esl_opt_IsOn(go, "--sample")) &&
	 ((ntestseq  < cfg.min_ntest) || (ntrainseq < cfg.min_ntrain)))
	{ /* Test 2: Is there a subset of the sequences in the msa
	   *         that would satisfy our thresholds (most similar
	   *         train/test pair < cfg->idthresh1, and most
	   *         similar test/test pair < cfg->idthresh2) and that
	   *         include a sufficient number of train/test seqs.
	   * 
	   * We either use a greedy deterministic algorithm (by
	   * default) to look for these subsets, or we use a sampling
	   * algorithm (non-deterministic, enabled with --sample). 
	   */
	  if(esl_opt_IsOn(go, "--sub")) find_sets_greedily   (&cfg, msa, esl_opt_GetBoolean(go, "--xtest"), &i_am_train, &i_am_test);
	  else                          find_sets_by_sampling(&cfg, msa, esl_opt_GetInteger(go, "--sample"), esl_opt_GetBoolean(go, "--xtest"), &i_am_train, &i_am_test);
	  ntrainseq = esl_vec_ISum(i_am_train, msa->nseq);
	  ntestseq  = esl_vec_ISum(i_am_test,  msa->nseq);
	  /* we did find a satisfactory set (find_sets() checks that
	   * we have a sufficient number of test/train seqs, but
	   * check, to be sure */
	  if ((ntestseq  < cfg.min_ntest) || (ntrainseq < cfg.min_ntrain)) 
	    esl_fatal("find_sets() returned insufficient train/test sets!"); 
	}

      if ((ntestseq >= cfg.min_ntest) && (ntrainseq >= cfg.min_ntrain)) {
        /* We have a valid train/test set, that either satisfied
         * test 1 in separate_sets() or satisfied test 2 from
         * find_sets().  Extract and write out the training alignment. */
        if ((status = esl_msa_SequenceSubset(msa, i_am_train, &trainmsa)) != eslOK) goto ERROR;
        esl_msa_MinimGaps(trainmsa, NULL, NULL, FALSE);
        esl_msafile_Write(cfg.out_msafp, trainmsa, eslMSAFILE_STOCKHOLM);

        esl_dst_XAverageId(cfg.abc, trainmsa->ax, trainmsa->nseq, 10000, &avgid); /* 10000 is max_comparisons, before sampling kicks in */
        fprintf(cfg.tblfp, "%-20s  %3.0f%% %6d %6d %6d %6d %6d\n", msa->name, 100.*avgid, (int) trainmsa->alen, msa->nseq, nfrags, trainmsa->nseq, ntestseq);
        nali++;

        if(cfg.tfp != NULL) {
          /* output 2 more alignments per family:
           * 1. training alignment with seqs renamed as "TRAIN.<fam>.<i>"
           * 2. test     alignment with seqs renamed as "<fam>/<i>"
           */
          /* Rename seqs */
          for(i = 0, traini = 0, testi = 0; i < msa->nseq; i++) {
            if(i_am_train[i]) {
              esl_msa_FormatSeqDescription(msa, i, msa->sqname[i]);
              esl_msa_FormatSeqName(msa, i, "TRAIN.%s.%d", msa->name, traini+1);
              traini++;
            }
            if(i_am_test[i]) {
              esl_msa_FormatSeqDescription(msa, i, msa->sqname[i]);
              esl_msa_FormatSeqName(msa, i, "%s/%d", msa->name, testi+1);
              testi++;
            }
          }
          /* Output train subset, note we don't use trainmsa, b/c it's has all gap columns removed */
          if ((status = esl_msa_SequenceSubset(msa, i_am_train, &tmpmsa)) != eslOK) goto ERROR;
          esl_msa_FormatName(tmpmsa, "TRAIN.%s", msa->name);
          esl_msafile_Write(cfg.tfp, tmpmsa, eslMSAFILE_PFAM);


          /* capture the consensus of the msa into train_consensus, for use in calculating pct_id later */
          status = esl_msaweight_PB(tmpmsa);
          ESL_REALLOC(tmpstr, msa->alen + 1 );
          esl_msa_ReasonableRF(tmpmsa, 0.5, TRUE, tmpstr);
          train_consensus = esl_sq_CreateFrom(msa->name, tmpstr, msa->name, msa->name, NULL);
          esl_sq_Digitize(msa->abc, train_consensus);

          /* Output test subset */
          if ((status = esl_msa_SequenceSubset(msa, i_am_test, &tmpmsa)) != eslOK) goto ERROR;
          esl_msa_FormatName(tmpmsa, "TEST.%s", msa->name);
          esl_msafile_Write(cfg.tfp, tmpmsa, eslMSAFILE_PFAM);
          esl_msa_Destroy(tmpmsa);
        }


        /* Save the positive test sequences, we'll embed these
         * in the long test sequences later */
        if(npos > 0) { ESL_RALLOC(posseqs, ptr, sizeof(ESL_SQ *) * (npos + ntestseq)); }
        else         { ESL_ALLOC (posseqs,      sizeof(ESL_SQ *) * ntestseq); }
        for(i = 0; i < msa->nseq; i++) {
          if(i_am_test[i]) {
            esl_sq_FetchFromMSA(msa, i, &(posseqs[npos]));
            poslen_total += posseqs[npos]->n;
            /* Sequence description is set as a concatenation of the
             * family name and the sequence index in this family,
             * separated by a '/', which never appears in an Rfam
             * name. For example: "tRNA/3" for the third tRNA.
             */
            esl_sq_FormatDesc(posseqs[npos], "%s/%d", msa->name, npos_this_msa+1);
            /* Write the sequence to the positives-only output file, and its info the positives-only table */
            esl_sqio_Write(cfg.out_posfp, posseqs[npos], eslSQFILE_FASTA, FALSE);

            if(cfg.tfp != NULL) {

              esl_dst_XPairId(msa->abc, train_consensus->dsq, msa->ax[i], &pctid, NULL, NULL);

              fprintf(cfg.ppossummfp, "%-35s %-35s %-35s %8d %8" PRId64 " %.0f\n",
              posseqs[npos]->desc,  /* description, this has been set earlier as the msa name plus seq idx (e.g. "tRNA/3" for 3rd tRNA in the set)   */
              posseqs[npos]->name,  /* positive sequence name (from input MSA) */
              posseqs[npos]->name,  /* again, positive sequence name (from input MSA) */
              1, posseqs[npos]->n,  /* start, stop */
              100*pctid);
            } else {
              fprintf(cfg.ppossummfp, "%-35s %-35s %-35s %8d %8" PRId64 "\n",
              posseqs[npos]->desc,  /* description, this has been set earlier as the msa name plus seq idx (e.g. "tRNA/3" for 3rd tRNA in the set)   */
              posseqs[npos]->name,  /* positive sequence name (from input MSA) */
              posseqs[npos]->name,  /* again, positive sequence name (from input MSA) */
              1, posseqs[npos]->n); /* start, stop */
            }
            npos++;
            npos_this_msa++;
          }
        }
      }
      if(i_am_train != NULL) free(i_am_train);
      if(i_am_test  != NULL) free(i_am_test);
      if(trainmsa != NULL) esl_msa_Destroy(trainmsa);
      trainmsa = NULL;
      esl_msa_Destroy(origmsa);
      esl_msa_Destroy(msa);
  }

  if (status != eslEOF)           esl_msafile_ReadFailure(afp, status);
  else if (nali   == 0)           esl_fatal("No alignments found in file %s\n", alifile);

  /* Make sure we summed length of the positives isn't above the max allowed */
  if(poslen_total > (esl_opt_GetReal(go, "-X") * cfg.nneg * cfg.negL)) { 
    esl_fatal("positive seqs summed length is %.4f fraction of the test sequences, max allowed is %.4f (adjust with -X)\n", 
	      ((float) poslen_total / (float) (cfg.nneg * cfg.negL)), esl_opt_GetReal(go, "-X")); 
  }

  /* Generate the negative sequences and embed the positives to create the benchmark sequences */
  if (nali > 0)
    if((status = synthesize_negatives_and_embed_positives(go, &cfg, posseqs, npos)) != eslOK) esl_fatal("Allocation error. Out of memory.");

  fclose(cfg.out_msafp);
  fclose(cfg.out_bmkfp);
  fclose(cfg.out_posfp);
  fclose(cfg.possummfp);
  fclose(cfg.ppossummfp);
  if(cfg.negsummfp != NULL) fclose(cfg.negsummfp);
  if(cfg.nseqfp    != NULL) fclose(cfg.nseqfp);
  if(cfg.tfp       != NULL) fclose(cfg.tfp);
  fclose(cfg.tblfp);
  esl_randomness_Destroy(cfg.r);
  esl_alphabet_Destroy(cfg.abc);
  esl_msafile_Close(afp);
  esl_getopts_Destroy(go);
  return 0;

 ERROR:
  esl_fatal("Allocation error. Out of memory");
}
      
  
/* Open the source sequence database for negative subseqs;
 * upon return, cfg->dbfp is open (digital, SSI indexed);
 * and cfg->db_nseq is set.
 */
static int
process_dbfile(struct cfg_s *cfg, char *dbfile, int dbfmt)
{
  ESL_SQ     *sq    = esl_sq_CreateDigital(cfg->abc);
  int         status;
  int         nread;      /* number of sequences of at least length cfg->negchunkL read from db */
  int         nrequired;  /* number of sequences of at least length cfg->negchunkL required in db */

  /* Open the sequence file in digital mode */
  status = esl_sqfile_OpenDigital(cfg->abc, dbfile, dbfmt, NULL, &(cfg->dbfp));
  if      (status == eslENOTFOUND) esl_fatal("No such file %s", dbfile);
  else if (status == eslEFORMAT)   esl_fatal("Format of seqfile %s unrecognized.", dbfile);
  else if (status == eslEINVAL)    esl_fatal("Can't autodetect stdin or .gz.");
  else if (status != eslOK)        esl_fatal("Open failed, code %d.", status);

  /* Read sequence file until we know it contains enough sequences to
   * sample from to create the benchmark sequences if we sampled
   * without replacement (even though we sample with replacement, so
   * just 1 seq of length cfg->negchunkL would suffice). 
   * We don't read the whole sequence file b/c it could be very
   * large (rfamseq is >100 Gb) and that would take a long time.
   */
  nread = 0;
  nrequired = ((cfg->negL / cfg->negchunkL) + 1) * cfg->nneg;

  while ((nread < nrequired) && 
	 ((status = esl_sqio_ReadInfo(cfg->dbfp, sq)) == eslOK)) {
    if(sq->L > cfg->negchunkL) nread++;
    esl_sq_Reuse(sq);
  }
  if (nread < nrequired) { /* there weren't enough seqs of sufficient length */
    if(status == eslEOF) esl_fatal("Only read %d seqs of length %d in seq db, %d required", nread, cfg->negchunkL, nrequired);
    else                 esl_fatal("Something went wrong with reading the seq db");
  }
  esl_sqfile_Position(cfg->dbfp, 0); /* rewind */

  /* Open SSI index */
  if (esl_sqfile_OpenSSI(cfg->dbfp, NULL) != eslOK) esl_fatal("Failed to open SSI index file");
  /* set number of seqs in db; trust the index */
  cfg->db_nseq = cfg->dbfp->data.ascii.ssi->nprimary;

  esl_sq_Destroy(sq);
  return eslOK;
}


/* Label all sequence fragments < fragfrac of average raw length */
static int
remove_fragments(struct cfg_s *cfg, ESL_MSA *msa, ESL_MSA **ret_filteredmsa, int *ret_nfrags)
{
  int     *useme    = NULL;
  double   len      = 0.0;
  int      i;
  int      status;

  /* min length is cfg->fragfrac * average length */
  for (i = 0; i < msa->nseq; i++) 
    len += esl_abc_dsqrlen(msa->abc, msa->ax[i]);
  len *= cfg->fragfrac / (double) msa->nseq;

  ESL_ALLOC(useme, sizeof(int) * msa->nseq);
  for (i = 0; i < msa->nseq; i++) 
    useme[i] = (esl_abc_dsqrlen(msa->abc, msa->ax[i]) < len) ? 0 : 1;

  if ((status = esl_msa_SequenceSubset(msa, useme, ret_filteredmsa)) != eslOK) goto ERROR;
  *ret_nfrags = msa->nseq - esl_vec_ISum(useme, msa->nseq);

  free(useme);
  return eslOK;

 ERROR:
  if (useme != NULL) free(useme); 
  *ret_filteredmsa = NULL;
  return status;
}

/* Test 1.  Determine if valid training and test sets exist in the MSA
 *          by testing if all the following criteria are met:
 *          1. no train/test sequence pair is > cfg->idthresh1 fractionally
 *             identical (controllable with -1).
 *          2. no test sequence pair is > cfg->idthresh2 fractionally
 *             identical (controllable with -2).
 *          3. all other msa sequences not in train nor test are
 *             at least cfg->idthresh2 fractionally identical 
 *             with >= 1 test sequence.
 * 
 *          ret_i_am_train - [0..msa->nseq-1]: 1 if a training seq, 0 if not 
 *          ret_i_am_test  - [0..msa->nseq-1]: 1 if a test seq, 0 if not 
 */
static int
separate_sets(struct cfg_s *cfg, ESL_MSA *msa, int **ret_i_am_train, int **ret_i_am_test)
{      
  ESL_MSA   *trainmsa  = NULL;
  ESL_MSA   *test_msa  = NULL;
  int *assignment = NULL;
  int *nin        = NULL;
  int *i_am_train = NULL;
  int *i_am_test  = NULL;
  int *i_am_possibly_test  = NULL;
  int  nc         = 0;
  int  c;
  int  ctrain;			/* index of the cluster that becomes the training alignment */
  int  nskip;
  int  i, i2;
  int  status;

  ESL_ALLOC(i_am_train,         sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_possibly_test, sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_test,          sizeof(int) * msa->nseq);

  if ((status = esl_msacluster_SingleLinkage(msa, cfg->idthresh1, &assignment, &nin, &nc)) != eslOK) goto ERROR;
  ctrain = esl_vec_IArgMax(nin, nc);

  for (i = 0; i < msa->nseq; i++) i_am_train[i] = (assignment[i] == ctrain) ? 1 : 0;
  if ((status = esl_msa_SequenceSubset(msa, i_am_train, &trainmsa)) != eslOK) goto ERROR;

  /* If all the seqs went into the training msa, none are left for testing; we're done here */
  if (trainmsa->nseq == msa->nseq) {
    esl_vec_ISet(i_am_train, msa->nseq, 0);
    esl_vec_ISet(i_am_test,  msa->nseq, 0);
    free(assignment);
    free(nin);
    free(i_am_possibly_test);
    esl_msa_Destroy(trainmsa);
    *ret_i_am_train = i_am_train;
    *ret_i_am_test  = i_am_test;
    return eslOK;
  }

  /* Put all the other sequences into an MSA of their own; from these, we'll
   * choose test sequences.
   */
  for (i = 0; i < msa->nseq; i++) i_am_possibly_test[i] = (assignment[i] != ctrain) ? 1 : 0;
  if ((status = esl_msa_SequenceSubset(msa, i_am_possibly_test, &test_msa))       != eslOK) goto ERROR;

  /* Cluster those test sequences. */
  free(nin);         nin        = NULL;
  free(assignment);  assignment = NULL;
  esl_vec_ISet(i_am_test, msa->nseq, 0);
  if ((status = esl_msacluster_SingleLinkage(test_msa, cfg->idthresh2, &assignment, &nin, &nc)) != eslOK) goto ERROR;
  for (c = 0; c < nc; c++) {
    nskip = esl_rnd_Roll(cfg->r, nin[c]); /* pick a random seq in this cluster to be the test. */
    for (i=0, i2=0; i < msa->nseq; i++) /* i is idx in orig msa, i2 is idx in test_msa */
      if(i_am_possibly_test[i]) { /* i is in test_msa */
	if (assignment[i2] == c) {
	  if (nskip == 0) { /* this sequence will be a test seq, set i_am_test[i] as 1 */
	    i_am_test[i] = 1;
	    break;
	  } 
	  else { 
	    nskip--;
	  }
	}
	i2++;
      }
  }

  esl_msa_Destroy(test_msa);
  free(nin);
  free(assignment);
  free(i_am_possibly_test);

  *ret_i_am_train = i_am_train;
  *ret_i_am_test  = i_am_test;

  return eslOK;

 ERROR:
  if (i_am_train != NULL) free(i_am_train);
  if (i_am_test  != NULL) free(i_am_test);
  if (i_am_possibly_test  != NULL) free(i_am_possibly_test);
  if (assignment != NULL) free(assignment);
  if (nin        != NULL) free(nin);
  esl_msa_Destroy(trainmsa); 
  esl_msa_Destroy(test_msa); 
  *ret_i_am_train = NULL;
  *ret_i_am_test  = NULL;
  return status;
}

/* Test 2. Greedy approach:
 *         Use a greedy, deterministic  algorithm to see if we 
 *         can define a subset of msa sequences (call it sub_msa) 
 *         that comprise valid train/test sets of sufficient sizes 
 *         that satisfy:
 *
 *          1. no train/test sequence pair is > cfg->idthresh1
 *             fractionally identical (controllable with -1).  
 *          2. no test sequence pair is > cfg->idthresh2 
 *   	       fractionally identical (controllable with -2).  
 *  
 * The algorithm for checking is greedy and not guaranteed to find a
 * submsa if it exists. Likewise, it is not guaranteed to find the
 * largest such submsa. 
 * 
 * Briefly, the algorithm takes each msa sequence i, creates the
 * training set that is compatible with i being a test sequence, and
 * then adds all remaining (non-training) sequences j that are
 * compatible with i (id[i][j] < cfg->idthresh2) to the test set. The
 * set of sequences in the testing and training set define the submsa.
 * By default, the submsa that satisfies 1 and 2 and includes the
 * largest total number of sequences (|train| + |test|) is chosen and
 * the corresponding training and testing sets are returned. With
 * --xtest, the submsa with the largest number of test sequences is
 * chosen instead.
 */
static int
find_sets_greedily(struct cfg_s *cfg, ESL_MSA *msa, int do_xtest, int **ret_i_am_train, int **ret_i_am_test)
{      
  int *i_am_test       = NULL;
  int *i_am_train      = NULL;
  int *i_am_best_test  = NULL;
  int *i_am_best_train = NULL;
  ESL_DMATRIX *S       = NULL; /* pairwise identity matrix */
  int  i, j, k;
  int  ntest, ntrain;
  int  nbest_test, nbest_train;
  int  status;
  int  add_j_to_test;

  ESL_ALLOC(i_am_test,       sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_train,      sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_best_test,  sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_best_train, sizeof(int) * msa->nseq);

  /* initialize best_train and best_test sets */
  esl_vec_ISet(i_am_best_train, msa->nseq, FALSE);
  esl_vec_ISet(i_am_best_test,  msa->nseq, FALSE);
  nbest_train = 0;
  nbest_test = 0;

  /* get pairwise ID matrix */
  if ((status = esl_dst_XPairIdMx(msa->abc, msa->ax, msa->nseq, &S)) != eslOK) goto ERROR;

  for(i = 0; i < msa->nseq; i++) { 
    /* initialize train and test sets for this seq */
    esl_vec_ISet(i_am_train, msa->nseq, FALSE);
    esl_vec_ISet(i_am_test,  msa->nseq, FALSE);
    i_am_test[i] = TRUE; /* i is in the test set */
    ntrain = 0;
    ntest  = 1;

    /* Determine all seqs that are < cfg->idthresh1 identical to i,
     * this will be the largest possible training set that is consistent
     * with i being in the test set.
     */
    for(j = 0; j < msa->nseq; j++) { 
      if(S->mx[i][j] < cfg->idthresh1) { 
	i_am_train[j] = TRUE;
	ntrain++;
      }
    }

    /* If the training set is big enough, try to add all seqs not in
     * the training set to the test set while maintaining the property
     * that all seqs in the test set must be less than cfg->idthresh1
     * similar to all seqs in the training set and must be at most 
     * cfg->idthresh2 similar to all seqs in the test set. */
    if(ntrain >= cfg->min_ntrain) { 
      for(j = 0; j < msa->nseq; j++) { 
	if(i_am_train[j] == FALSE && i_am_test[j] == FALSE) { 
	  add_j_to_test = TRUE;
	  for(k = 0; k < msa->nseq; k++) { 
	    if(((i_am_train[k] == TRUE) && (S->mx[j][k] >= cfg->idthresh1)) ||  /* too similar to a training seq */
	       ((i_am_test[k] == TRUE)  && (S->mx[j][k] >= cfg->idthresh2))) {  /* too similar to a test     seq */
	      add_j_to_test = FALSE;
	      break;
	    }
	  }
	  if(add_j_to_test == TRUE) { 
	    i_am_test[j] = TRUE;
	    ntest++;
	  }
	}
      }
      
      /* printf("i: %5d  ntrain: %5d  ntest: %5d  nbest_train: %5d  nbest_test: %5d\n", 
	 i, ntrain, ntest, nbest_train, nbest_test); */

      /* If training set is larger than test set, and we have at least
       * the minimum allowed number of test seqs, then check if this
       * is our best set of train and test clusters thus far found, if
       * so, update best_test and best_train.  Where the 'best' is
       * defined as either: 
       *    maximum of |train| + |test| (default)
       * OR maximum of |test|           (enabled with --xtest)
       */
      if((ntrain > ntest) && (ntest  >= cfg->min_ntest)) { /* training and test set are sufficiently large */
	if(((  do_xtest) && (ntest   > nbest_test)) || 
	   ((!  do_xtest) && ((ntrain+ntest) > (nbest_train+nbest_test)))) { 
	  esl_vec_ICopy(i_am_train, msa->nseq, i_am_best_train);
	  esl_vec_ICopy(i_am_test,  msa->nseq, i_am_best_test);
	  nbest_train = ntrain;
	  nbest_test  = ntest;
	}
      }
    }
  } /* end of for(i = 0; i < msa->nseq; i++) */
       
  if(nbest_train == 0 || nbest_test == 0) { 
    esl_vec_ISet(i_am_best_train, msa->nseq, 0);
    esl_vec_ISet(i_am_best_test,  msa->nseq, 0);
  }
  else { 
    ;/* printf("Success! train: %d seqs test: %d seqs\n", nbest_train, nbest_test); */
  }
  *ret_i_am_train = i_am_best_train;
  *ret_i_am_test  = i_am_best_test;
  
  free(i_am_train);
  free(i_am_test);
  esl_dmatrix_Destroy(S);
  return eslOK;

 ERROR:
  if (i_am_train != NULL) free(i_am_train);
  if (i_am_test != NULL)  free(i_am_test);
  if (i_am_best_train != NULL) free(i_am_best_train);
  if (i_am_best_test != NULL)  free(i_am_best_test);
  esl_dmatrix_Destroy(S);
  *ret_i_am_train = NULL;
  *ret_i_am_test  = NULL;
  return status;
}


/* Test 2. Sampling approach:
 *         Sample sequences in a random order, adding them to growing
 *         test/train sets to see if we can define valid train/test
 *         sets of sufficient sizes that satisfy:
 *
 *          1. no train/test sequence pair is > cfg->idthresh1
 *             fractionally identical (controllable with -1).  
 *          2. no test sequence pair is > cfg->idthresh2 
 *   	       fractionally identical (controllable with -2).  
 *  
 * The algorithm for is not guaranteed to find a submsa if it
 * exists. Likewise, it is not guaranteed to find the largest such
 * submsa.
 * 
 * Briefly, the approach is, for each sample, to randomly select a
 * sequence i and define it as the first test sequence. Then look at
 * all other sequences in random order. For each, if it is less than
 * cfg->idthresh1 fractionally identical to all existing test
 * sequences, add it to the training set. Else if it is less than
 * cfg->idthresh1 fractionally identical to all existing training
 * sequences, then add it to the test set. When finished, remove
 * redundancy from the test set such that no two test sequences
 * are more than cfg->idthresh2 fractionally identical. 
 * 
 * By default, the train/test set resulting from any sample that
 * satisfies 1 and 2 and includes the largest total number of
 * sequences (|train| + |test|) is chosen and the corresponding
 * training and testing sets are returned. With --xtest, the
 * train/test set with the largest number of test sequences is chosen
 * instead.
 */
static int
find_sets_by_sampling(struct cfg_s *cfg, ESL_MSA *msa, int nsamples, int do_maxtest, int **ret_i_am_train, int **ret_i_am_test)
{      
  ESL_MSA   *test_msa  = NULL;
  int *i_am_test       = NULL;
  int *i_am_train      = NULL;
  int *i_am_best_test  = NULL;
  int *i_am_best_train = NULL;
  int *curlist         = NULL;
  int *test_msa2msa    = NULL;
  int *assignment      = NULL;
  int *nin             = NULL;
  int  n, i, j, k;
  int  ntest, ntrain;
  int  nbest_test, nbest_train;
  int  status;
  int  tmp;
  int  ctr;
  int  nc = 0;
  int  c, p;
  int  nskip;
  float maxid_train;
  float maxid_test;

  ESL_DMATRIX *S; /* pairwise identity matrix */

  ESL_ALLOC(i_am_test,       sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_train,      sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_best_test,  sizeof(int) * msa->nseq);
  ESL_ALLOC(i_am_best_train, sizeof(int) * msa->nseq);
  ESL_ALLOC(curlist,         sizeof(int) * msa->nseq);

  /* initialize best_train and best_test sets */
  esl_vec_ISet(i_am_best_train, msa->nseq, FALSE);
  esl_vec_ISet(i_am_best_test,  msa->nseq, FALSE);
  nbest_train = 0;
  nbest_test = 0;

  /* get pairwise ID matrix */
  if ((status = esl_dst_XPairIdMx(msa->abc, msa->ax, msa->nseq, &S)) != eslOK) goto ERROR;

  for(n = 0; n < nsamples; n++) { 
    i = esl_rnd_Roll(cfg->r, msa->nseq); /* pick a random seq to seed the test set */
    /* initialize train and test sets for this seq */
    esl_vec_ISet(i_am_train, msa->nseq, FALSE);
    esl_vec_ISet(i_am_test,  msa->nseq, FALSE);
    i_am_test[i] = TRUE; /* i is in the test set */
    ntrain = 0;
    ntest  = 1;
    for(k = 0; k < msa->nseq; k++) curlist[k] = k;

    for(ctr = 0; ctr < msa->nseq; ctr++) { 
      /* choose next seq to evaluate */
      p = esl_rnd_Roll(cfg->r, msa->nseq - ctr);
      j = curlist[p];

      /* update curlist, this ensures we never sample the same j twice */
      for(k = p; k < (msa->nseq-1); k++) curlist[k] = curlist[k+1];
      curlist[msa->nseq-1] = -1;

      /* find the fractional identity of j's nearest neighbors in the current 
       * test set and training set */
      if(j != i) { /* skip when j == i, it's already in the test set */
	if(i_am_test[j] || i_am_train[j]) esl_fatal("double picked %d on sample %d\n", j, n);
	maxid_train = maxid_test = 0.;
	for(k = 0; k < msa->nseq; k++) { 
	  if((i_am_train[k] == TRUE)  && (S->mx[j][k] > maxid_train)) { maxid_train = S->mx[j][k]; }
	  if((i_am_test[k]  == TRUE)  && (S->mx[j][k] > maxid_test))  { maxid_test  = S->mx[j][k]; }
	}
	if     (maxid_test  < cfg->idthresh1) { i_am_train[j] = TRUE; ntrain++; } /* add j to training set */
	else if(maxid_train < cfg->idthresh1) { i_am_test[j]  = TRUE; ntest++;  } /* add j to testing set */
      }
    }

    /* if ntest > ntrain, swap the sets */
    if(ntest > ntrain) { 
      for(j = 0; j < msa->nseq; j++) { 
	tmp = i_am_train[j];
	i_am_train[j] = i_am_test[j];
	i_am_test[j] = tmp;
      }
      tmp = ntest;
      ntest = ntrain;
      ntrain = tmp;
    }

    /* sanity check */
    for(k = 0; k < msa->nseq; k++) { if(i_am_test[k] && i_am_train[k]) esl_fatal("ERROR %d is both train and test\n", k); }

    /* if we have sufficient numbers of training and testing, remove
     * redundancy from the test set, optimally (randomly select one
     * representative from each cluster following SLC) */
    if(ntrain >= cfg->min_ntrain && ntest >= cfg->min_ntest) { 
      if ((status = esl_msa_SequenceSubset(msa, i_am_test, &test_msa)) != eslOK) goto ERROR;

      /* reset i_am_test[], we'll refill it with single seq from each cluster */
      ESL_ALLOC(test_msa2msa, sizeof(int) * ntest);
      esl_vec_ISet(test_msa2msa, ntest, FALSE);
      ctr = 0;
      for(k = 0; k < msa->nseq; k++) { if(i_am_test[k]) test_msa2msa[ctr++] = k; }
      esl_vec_ISet(i_am_test, msa->nseq, FALSE);
      ntest = 0;

      /* Cluster the test sequences. */
      if(nin != NULL)        { free(nin);         nin        = NULL; }
      if(assignment != NULL) { free(assignment);  assignment = NULL; }
      if ((status = esl_msacluster_SingleLinkage(test_msa, cfg->idthresh2, &assignment, &nin, &nc)) != eslOK) goto ERROR;
      for (c = 0; c < nc; c++) { 
	nskip = esl_rnd_Roll(cfg->r, nin[c]); /* pick a random seq in this cluster to be the test. */
	for (k=0; k < test_msa->nseq; k++)
	  if (assignment[k] == c) {
	    if (nskip == 0) {
	      i_am_test[test_msa2msa[k]] = TRUE;
	      ntest++;
	      break;
	    } else nskip--;
	  }
      }
      esl_msa_Destroy(test_msa);
      free(test_msa2msa);

      if(ntest >= cfg->min_ntest) { 
	/* printf("n: %5d  ntrain: %5d  ntest: %5d  nbest_train: %5d  nbest_test: %5d\n", 
	   n, ntrain, ntest, nbest_train, nbest_test); */

	/* We have sufficiently large train and test sets.  Check if
	 * this i our best set of train and test clusters thus far
	 * found, if so, update best_test and best_train.  Where the
	 * 'best' is defined as either: 
	 *    maximum of |train| + |test| (default) 
	 * OR maximum of |test|           (enabled with --maxtest)
	 */

	if((  do_maxtest && (ntest   > nbest_test)) || 
	   (! do_maxtest && ((ntrain+ntest) > (nbest_train+nbest_test)))) { 
	  esl_vec_ICopy(i_am_train, msa->nseq, i_am_best_train);
	  esl_vec_ICopy(i_am_test,  msa->nseq, i_am_best_test);
	  nbest_train = ntrain;
	  nbest_test  = ntest;
	}
      }
    }
  } /* end of for(n = 0; n < msa->nseq; n++) */
       
  if(nbest_train == 0 || nbest_test == 0) { 
    esl_vec_ISet(i_am_best_train, msa->nseq, 0);
    esl_vec_ISet(i_am_best_test,  msa->nseq, 0);
  }
  else { 
    ;/* printf("Success! train: %d seqs test: %d seqs\n", nbest_train, nbest_test); */
  }
  *ret_i_am_train = i_am_best_train;
  *ret_i_am_test  = i_am_best_test;
  
  free(i_am_train);
  free(i_am_test);
  esl_dmatrix_Destroy(S);
  return eslOK;

 ERROR:
  if (i_am_train != NULL) free(i_am_train);
  if (i_am_test != NULL)  free(i_am_test);
  if (i_am_best_train != NULL) free(i_am_best_train);
  if (i_am_best_test != NULL)  free(i_am_best_test);
  *ret_i_am_train = NULL;
  *ret_i_am_test  = NULL;
  return status;
}

/* sythesize_negatives_and_embed_positives()
 * 
 * 1. Randomly pick which negative sequence each positive sequence will
 *    be embedded in, and the location/orientation it will be embedded. 
 * 2. Generate each negative sequence from the input database with the
 *    desired shuffling procedure and use it to create a benchmark sequence.
 *    Each benchmark sequence includes a complete negative sequence as well
 *    as all the positives to be embedded within that negative, 'inserted'
 *    in the appropriate positions. These benchmark sequences will be 
 *    searched during the benchmark.
 */

static int
synthesize_negatives_and_embed_positives(ESL_GETOPTS *go, struct cfg_s *cfg, ESL_SQ **posseqs, int npos)
{
  int status;
  ESL_SQ *negsq = NULL;    /* a negative sequence */
  ESL_SQ *bmksq = NULL;    /* an output sequence, negative sequence with embedded positive sequence(s) */
  int     i;               /* index of negative sequence */
  int     j;               /* index of positive sequence to embed in negative sequence */
  int64_t p;               /* a position in a sequence */
  int64_t neg_p;           /* a position in a negative sequence */
  int64_t bmk_p;           /* a position in an output  sequence */
  int     chunkL;          /* length of a sequence chunk to extract from the db while constructing negatives */
  int     q;               /* an index for one of the embedded seqs in a output sequence */
  void   *ptr;             /* for reallocating */
  int     alloc_chunk = 2; /* number of elements to add when reallocating */
  int     keep_rolling;    /* for continuing to randomly choose numbers */
  ESL_DSQ *tmpdsq;         /* temporary dsq, generated by the HMM */

  /* per-positive sequence variables, all are [0..j..npos-1] */
  int    *posseqs_i = NULL;  /* negative sequence idx (i) j is embedded within */
  int    *posseqs_p = NULL;  /* sequence position idx (p) j occurs at within the negative sequence it is embedded within */
  int    *posseqs_o = NULL;  /* orientation for sequence j within the negative sequence it is embedded within (0 or 1) */

  /* per-negative sequence variables */
  int    *negseqs_n = NULL;      /* [0..i..cfg->nneg-1] number of positive sequences to be embedded in negative sequence i */
  int    *negseqs_poslen = NULL; /* [0..i..cfg->nneg-1] summed length of positive sequences to be embedded in negative sequence i */
  int   **negseqs_p = NULL;      /* [0..i..cfg->nneg-1][0..q..negseqs_n[i]] sequence position index (p) at which a sequence will be embedded */
  int    *cur_alloc = NULL;      /* [0..i..cfg->nneg-1] current number of elements allocated for negseqs_p[i] */
  
  ESL_ALLOC(posseqs_i,      sizeof(int) * npos);
  ESL_ALLOC(posseqs_p,      sizeof(int) * npos);
  ESL_ALLOC(posseqs_o,      sizeof(int) * npos);
  ESL_ALLOC(negseqs_n,      sizeof(int) * cfg->nneg);
  ESL_ALLOC(negseqs_poslen, sizeof(int) * cfg->nneg);
  ESL_ALLOC(negseqs_p,      sizeof(int *) * cfg->nneg);
  ESL_ALLOC(cur_alloc,      sizeof(int) * cfg->nneg);

  /* Initialize */
  esl_vec_ISet(negseqs_n, cfg->nneg, 0);
  esl_vec_ISet(negseqs_poslen, cfg->nneg, 0);
  for (i = 0; i < cfg->nneg; i++) {
    ESL_ALLOC(negseqs_p[i], sizeof(int *) * alloc_chunk);
    cur_alloc[i] = alloc_chunk;
  }

  /* Randomly pick test sequence/positions/orientations in which to embed each positive */
  for (j = 0; j < npos; j++) {
    /* pick a test sequence to embed within */
    i  = esl_rnd_Roll(cfg->r, cfg->nneg); /* i = 0..cfg->nneg-1 */ 
    if(negseqs_n[i] == cur_alloc[i]) { 
      cur_alloc[i] += alloc_chunk;
      ESL_RALLOC(negseqs_p[i], ptr, sizeof(int) * (cur_alloc[i])); 
    }
    posseqs_i[j] = i;

    /* Pick a position after which to embed the sequence.
     * We require it to be unique: each positive test sequence must embed
     * at a different position 
     */
    keep_rolling = TRUE;
    while(keep_rolling) { 
      p = esl_rnd_Roll(cfg->r, cfg->negL) + 1; /* p = 1..cfg->negL (note the + 1) */
      keep_rolling = FALSE;
      for(q = 0; q < negseqs_n[i]; q++) { 
	if(negseqs_p[i][q] == p) { keep_rolling = TRUE; break; }
      }
    }
    posseqs_p[j] = p;
    negseqs_p[i][negseqs_n[i]] = p; /* we store this twice, b/c we'll sort negseqs_p[i] later */

    /* pick an orientation in which to embed */
    posseqs_o[j] = esl_rnd_Roll(cfg->r, 2); /* 0..1, Watson or Crick */

    /* increment counters */
    negseqs_n[i]++;
    negseqs_poslen[i] += posseqs[j]->n; 
  }

  /* At this point, for each negative sequence, we now know which
   * positives we'll embed within it as well as where they'll be
   * embedded. Next, we generate the negative sequence and a benchmark
   * sequence for each negative. The benchmark sequence will consist of
   * the entire negative sequence in order, but with the positives
   * inserted at their corresponding positions and orientations. The
   * length of the benchmark sequence will be cfg->negL+negseqs_poslen[i]. 
   */
  bmksq = esl_sq_CreateDigital(cfg->abc);
  negsq = esl_sq_CreateDigital(cfg->abc);
  for (i = 0; i < cfg->nneg; i++) {
    /* Allocate and initialize the benchmark sequence */
    esl_sq_GrowTo(bmksq, cfg->negL+negseqs_poslen[i]);
    bmksq->n = cfg->negL + negseqs_poslen[i];
    bmksq->dsq[0] = bmksq->dsq[bmksq->n+1] = eslDSQ_SENTINEL;
    esl_sq_FormatName(bmksq, "rmark%d", i+1);
    esl_sq_FormatName(negsq, "rmark%d-nopositives", i+1);

    /* Create the negative sequence of length cfg->negL by either
     * generating sequence from the HMM or by using the input database
     * (if -S).  If using the HMM, generate and concatenate as many
     * seqs as necessary until the total length is cfg->negL.  If -S,
     * select chunks of the input database of length cfg->negchunkL
     * (user-definable with -C) and shuffle them with the specified
     * method and appending. If --iid, we construct each chunk and
     * append them, even though it's unnecessary - we could just do
     * one chunk.
     */
    esl_sq_GrowTo(negsq, cfg->negL); 
    negsq->dsq[0] = negsq->dsq[cfg->negL+1] = eslDSQ_SENTINEL;
    negsq->n = 0;
    while(negsq->n < cfg->negL) { 
      if(esl_opt_GetBoolean(go, "-S") || esl_opt_GetBoolean(go, "--iid")) { /* shuffle part of the seqdb */
	chunkL = (negsq->n + cfg->negchunkL <= cfg->negL) ? cfg->negchunkL : cfg->negL - negsq->n;
	if(cfg->negsummfp != NULL) { 
	  /* print out sequence name, start/end posn in newly constructed negative seq, set_random_segment() will print the rest */
	  fprintf(cfg->negsummfp, "%-10s %10" PRId64 " %10" PRId64 " ", bmksq->name, negsq->n+1, negsq->n + chunkL); 
	}
	set_random_segment(go, cfg, cfg->negsummfp, negsq->dsq + negsq->n + 1, chunkL);
	negsq->n += chunkL;
      }
      else { /* -S not enabled, generate part of the sequence from the HMM */
	esl_hmm_Emit(cfg->r, cfg->hmm, &tmpdsq, NULL, &chunkL);
	if((negsq->n + chunkL) > cfg->negL) chunkL = cfg->negL - negsq->n;
	memcpy(negsq->dsq + negsq->n + 1, tmpdsq+1, sizeof(ESL_DSQ) * chunkL);
	free(tmpdsq);
	/* printf("negsq %2d %10" PRId64 "\n", i, negsq->n); */
	negsq->n += chunkL;
      }
    }
    /* no need to name negsq, we won't output it */

    /* Construct the benchmark sequence by copying chunks of the negative
     * sequence and the positives to be embedded within it, in the
     * proper order. First, sort the list of embed positions, so we
     * can step through and embed easily
     */
    esl_vec_ISortIncreasing(negseqs_p[i], negseqs_n[i]); 

    neg_p = 1; /* position in negative  seq, 1..negsq->n,   in the for loop below we've always accounted for 1..neg_p-1 */
    bmk_p = 1; /* position in benchmark seq, 1..bmksq->n, in the for loop below we've always we've accounted for 1..bmk_p-1 */
    for(q = 0; q < negseqs_n[i]; q++) { /* foreach positive to embed within neg seq i */
      memcpy(bmksq->dsq+bmk_p, negsq->dsq+neg_p, sizeof(ESL_DSQ) * (negseqs_p[i][q] - neg_p + 1));
      bmk_p += negseqs_p[i][q] - neg_p + 1; 
      neg_p  = negseqs_p[i][q] + 1; 
      /* Search exhaustively for the posseq idx j that embeds at neg_p (there can only be one, see above) 
       * This is necessary b/c we sorted negseqs_p, but not posseqs_p */
      for(j = 0; j < npos; j++) { 
	if((posseqs_i[j] == i) && (posseqs_p[j] == negseqs_p[i][q])) { break; }
      }
      if(j == npos) esl_fatal("Unable to find positive sequence that embeds after posn %" PRId64 " in negseq %d\n", neg_p, i);
      /* found it, now embed by copying, after reverse complementing if nec */
      if(posseqs_o[j] == 1) { 
	if((status = esl_sq_ReverseComplement(posseqs[j])) != eslOK) esl_fatal("Failed to reverse complement"); 
      }
      memcpy(bmksq->dsq+bmk_p, posseqs[j]->dsq+1, sizeof(ESL_DSQ) * posseqs[j]->n);
      bmk_p += posseqs[j]->n;

      /* output positive data to summary file */
      fprintf(cfg->possummfp, "%-35s %-10s %-35s %8" PRId64 " %8" PRId64 "\n",
	      posseqs[j]->desc, /* description, this has been set earlier as the msa name plus seq idx (e.g. "tRNA/3" for 3rd tRNA in the set)   */
	      bmksq->name,      /* output sequence name   (e.g. rmark10)   */
	      posseqs[j]->name, /* positive sequence name (from input MSA) */
	      (posseqs_o[j] == 0) ? (bmk_p - posseqs[j]->n + 1) : bmk_p,   /* start point in bmksq */
	      (posseqs_o[j] == 0) ? bmk_p : (bmk_p - posseqs[j]->n + 1));  /* end   point in bmksq */
    }

    /* done embedding, finish off outseq with the chunk that occurs after the final embedded seq */
    if(neg_p <= negsq->n) { 
      memcpy(bmksq->dsq+bmk_p, negsq->dsq+neg_p, sizeof(ESL_DSQ) * (negsq->n - neg_p + 1));
      bmk_p += negsq->n - neg_p + 1; 
      neg_p  = negsq->n + 1; 
    }
    /* sanity checks */
    if(neg_p != (negsq->n + 1))   esl_fatal("Error creating output sequence, full negative not properly included"); 
    if(bmk_p != (bmksq->n + 1)) esl_fatal("Error creating output sequence, output length incorrect"); 

    /* output the sequence */
    esl_sqio_Write(cfg->out_bmkfp, bmksq, eslSQFILE_FASTA, FALSE);
    esl_sq_Reuse(bmksq);
    if(cfg->nseqfp != NULL) esl_sqio_Write(cfg->nseqfp, negsq, eslSQFILE_FASTA, FALSE);
    esl_sq_Reuse(negsq);
  }

  esl_sq_Destroy(bmksq);
  esl_sq_Destroy(negsq);
  free(posseqs_i);
  free(posseqs_p);
  free(posseqs_o);
  for(i = 0; i < cfg->nneg; i++) { 
    free(negseqs_p[i]);
  }
  free(negseqs_p);
  free(negseqs_n);
  free(negseqs_poslen);
  free(cur_alloc);
  return eslOK;

 ERROR: 
  if(bmksq != NULL) esl_sq_Destroy(bmksq);
  if(negsq != NULL) esl_sq_Destroy(negsq);
  if(posseqs_i != NULL) free(posseqs_i);
  if(posseqs_p != NULL) free(posseqs_p);
  if(posseqs_o != NULL) free(posseqs_o);
  if(negseqs_p != NULL) { for(i = 0; i < cfg->nneg; i++) free(negseqs_p[i]); free(negseqs_p); }
  if(negseqs_n != NULL) free(negseqs_n);
  if(negseqs_poslen != NULL) free(negseqs_poslen);
  if(cur_alloc != NULL) free(cur_alloc);
  return status;
}

/* Fetch in a random sequence of length <L> from the the pre-digitized
 * concatenated sequence database, select a random subseq, shuffle it
 * by the chosen algorithm; set dsq[1..L] to the resulting randomized
 * segment.
 * 
 * If <logfp> is non-NULL, append one or more "<sqname> <from> <to>"
 * fields to current line, to record where the random segment was
 * selected from. This is useful in cases where we want to track back
 * the origin of a high-scoring segment, in case the randomization
 * wasn't good enough to obscure the identity of a segment.
 * 
 */
static int
set_random_segment(ESL_GETOPTS *go, struct cfg_s *cfg, FILE *logfp, ESL_DSQ *dsq, int L)
{
  ESL_SQ  *sq           = esl_sq_CreateDigital(cfg->abc);
  ESL_SQ  *dbsq         = esl_sq_CreateDigital(cfg->abc);
  int      minDPL       = esl_opt_GetInteger(go, "--minDPL"); 
  int      db_dependent = (esl_opt_GetBoolean(go, "--iid") == TRUE ? FALSE : TRUE);
  char    *pkey         = NULL;
  int64_t  start, end;
  int64_t  Lseq;
  int      status;

  if (L==0) return eslOK;
  if (L > cfg->negchunkL) esl_fatal("asking to fetch a segment longer than chunksize %d\n", L, cfg->negchunkL);

  /* fetch a random subseq from the source database */
  esl_sq_GrowTo(sq, L);
  if (db_dependent) 
    {
      do {                                                     
	if (pkey != NULL) free(pkey);
	esl_sq_Reuse(dbsq);
	
	/* NOTE: we should be able to use esl_ssi_FindNumber() to pick
	 * a random sequence and read it's length from the SSI
	 * index. However, I had trouble getting that to work on the
	 * Rfamseq database and I couldn't track down the
	 * problem. Maybe the SSI doesn't properly store the sequence
	 * lengths for such a large file? I resorted to positioning
	 * the file to a random sequence, and reading that sequence to
	 * get its length. This is much slower, but it works.
	 * 
	 * Code block that *should* work: 
	 * if (esl_ssi_FindNumber(cfg->dbfp->data.ascii.ssi, esl_rnd_Roll(cfg->r, cfg->db_nseq), NULL, NULL, NULL, &Lseq, &pkey) != eslOK)
	 * esl_fatal("failed to look up a random seq");
	 */
	/* pick a random sequence and get its pkey */
	if (esl_ssi_FindNumber(cfg->dbfp->data.ascii.ssi, esl_rnd_Roll(cfg->r, cfg->db_nseq), NULL, NULL, NULL, NULL, &pkey) != eslOK)
	  esl_fatal("failed to look up a random seq");
	/* position the sequence file */
	if(esl_sqfile_PositionByKey(cfg->dbfp, pkey) != eslOK) 
	  esl_fatal("failed to reposition to a random seq");
	/* read the random sequence to get its length */
	if(esl_sqio_Read(cfg->dbfp, dbsq) != eslOK) 
	  esl_fatal("failed to read random seq");
	Lseq = dbsq->L;
      } while (Lseq < L);
      
      start = 1 + esl_rnd_Roll(cfg->r, Lseq-L);              
      end   = start + L - 1;
      
      /* Another issue with SSI: the following line should suffice to
       * fetch the sequence, but it gave me problems, probably for the
       * same reasons alluded to above (which I can't figure out), so
       * instead of fetching it efficiently using SSI, we copy it from
       * <dbsq> which we only read b/c we need to be able to copy it
       * here. The following line *should* work (and remove the need for 
       * reading the full sequence into memory): 
       * if ((status = esl_sqio_FetchSubseq(cfg->dbfp, pkey, start, end, sq)) != eslOK) esl_fatal("failed to fetch subseq, status: %d", status);
       */
      sq->dsq[0] = sq->dsq[L+1] = eslDSQ_SENTINEL;
      memcpy(sq->dsq+1, dbsq->dsq+start, sizeof(ESL_DSQ) * L);
      esl_sq_ConvertDegen2X(sq);
    }
  
  /* log sequence source info: <name> <start> <end> */
  if (logfp != NULL && db_dependent) 
    fprintf(logfp, "%-35s %10" PRId64 " %10" PRId64 "\n", pkey, start, end); 
  
  /* Now apply the appropriate randomization algorithm, if none are turned on, use --di */
  if((esl_opt_GetBoolean(go, "--di")) || 
     ((! esl_opt_GetBoolean(go, "--mono")) && 
      (! esl_opt_GetBoolean(go, "--markov0")) && 
      (! esl_opt_GetBoolean(go, "--markov1")) && 
      (! esl_opt_GetBoolean(go, "--iid")))) { 
    if (L < minDPL)                             status = esl_rsq_XShuffle  (cfg->r, sq->dsq, L, sq->dsq);
    else                                        status = esl_rsq_XShuffleDP(cfg->r, sq->dsq, L, cfg->abc->Kp, sq->dsq);
  }
  else if (esl_opt_GetBoolean(go, "--mono"))    status = esl_rsq_XShuffle  (cfg->r, sq->dsq, L, sq->dsq);
  else if (esl_opt_GetBoolean(go, "--markov0")) status = esl_rsq_XMarkov0  (cfg->r, sq->dsq, L, cfg->abc->Kp, sq->dsq);
  else if (esl_opt_GetBoolean(go, "--markov1")) status = esl_rsq_XMarkov1  (cfg->r, sq->dsq, L, cfg->abc->Kp, sq->dsq);
  else if (esl_opt_GetBoolean(go, "--iid"))     status = esl_rsq_xIID      (cfg->r, cfg->fq, cfg->abc->K, L, sq->dsq);
  else esl_fatal("no randomization option? this can't happen.");
  if (status != eslOK) esl_fatal("esl's shuffling failed");

  memcpy(dsq, sq->dsq+1, sizeof(ESL_DSQ) * L);
  esl_sq_Destroy(sq);
  esl_sq_Destroy(dbsq);
  free(pkey);
  return eslOK;
}


/* read_hmmfile
 *
 * Read the input HMM file.
 * Lines beginning with # are comments and are ignored.
 * Format of file: 
 * line  1:                <alphabet-type> (1 token, must be integer between 1 and 5)
 * line  2:                <N>             (1 token, number of states)
 * line  3:                <begin>         (<N> tokens, the 'begin' probability distribution)
 * lines 4 to <N>+3:       <transitions>   (<N> tokens, transition distribution for state L-3 if line L)
 * lines <N>+4 to 2*<N>+3: <transitions>   (<abc->K> tokens, emission distribution for state L-<N>+3 if line L,	
 *                                           abc->K is size of alphabet (4 for RNA))     
 * 
 * All tokens in each probability distribution (lines 3->2*<N>+3) should sum to 1.0.
 * Types of alphabet: 
 * type   alphabet  abc->K
 *    1        RNA       4
 *    2        DNA       4
 *    3      AMINO      20
 *    4      COINS       2
 *    5       DICE       6
 * 
 * We die with esl_fatal() if there's an error.
 * Returns: VOID
 */
void
read_hmmfile(char *filename, ESL_HMM **ret_hmm)
{
  int             status;
  ESL_FILEPARSER *efp;
  ESL_HMM        *hmm = NULL;
  ESL_ALPHABET   *abc;
  char           *tok;
  int             type;
  int             i,j;
  int             nstates;

  if (esl_fileparser_Open(filename, NULL, &efp) != eslOK) esl_fatal("ERROR, failed to open template file %s in parse_template_file\n", filename);
  esl_fileparser_SetCommentChar(efp, '#');

  status = eslOK;
  /* get alphabet type */
  if((status = esl_fileparser_GetToken(efp, &tok, NULL)) != eslOK) esl_fatal("ERROR parsing HMM file, unable to read first token"); 
  type = atoi(tok);
  if(type < 1 || type > 5) { esl_fatal("ERROR parsing HMM file, first token should be alphabet type, an int between 1 and 5"); }
  if(type != eslRNA)       { esl_fatal("ERROR parsing HMM file, invalid alphabet type, it must be RNA (1)"); }
  abc = esl_alphabet_Create(type);

  /* get number of states */
  if((status = esl_fileparser_GetToken(efp, &tok, NULL)) != eslOK) esl_fatal("ERROR parsing HMM file, unable to read first token"); 
  nstates = atoi(tok);
  if((status = esl_fileparser_NextLine(efp)) != eslOK) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");

  /* create HMM */
  hmm = esl_hmm_Create(abc, nstates);

  /* read begin probs */
  j = 0; 
  while((status = esl_fileparser_GetTokenOnLine(efp, &tok, NULL)) == eslOK) { 
    hmm->pi[j++] = atof(tok);
  }
  if(j != hmm->M) { esl_fatal("ERROR parsing HMM file, wrong number of begin transitions, %d != %d", j, hmm->M); }
  if(esl_FCompare_old(esl_vec_FSum(hmm->pi, hmm->M), 1., eslSMALLX1) != eslOK) { esl_fatal("ERROR parsing HMM file, begin probs don't sum to 1."); }
  esl_vec_FNorm(hmm->pi, hmm->M);
  if((status = esl_fileparser_NextLine(efp)) != eslOK) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");

  /* read transition probs, should be hmm->M+1 of these for each state, the +1 is for the end prob */
  for(i = 0; i < hmm->M; i++) { 
    j = 0; 
    while((status = esl_fileparser_GetTokenOnLine(efp, &tok, NULL)) == eslOK) { 
      hmm->t[i][j++] = atof(tok);
    }
    if(j != (hmm->M+1)) { esl_fatal("ERROR parsing HMM file, wrong number of transitions for state %d", i); }
    if(esl_FCompare_old(esl_vec_FSum(hmm->t[i], (hmm->M+1)), 1., 0.00001) != eslOK) { esl_fatal("ERROR parsing HMM file, trans probs state %d don't sum to 1.", i); }
    esl_vec_FNorm(hmm->t[i], (hmm->M+1));

    if((status = esl_fileparser_NextLine(efp)) != eslOK) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");
  }
  
  /* read emission probs, should be abc->K of these per state */
  for(i = 0; i < hmm->M; i++) { 
    j = 0; 
    while((status = esl_fileparser_GetTokenOnLine(efp, &tok, NULL)) == eslOK) { 
      hmm->e[i][j++] = atof(tok);
    }
    if(j != (hmm->K)) { esl_fatal("ERROR parsing HMM file, wrong number of emissions for state %d", i); }
    if(esl_FCompare_old(esl_vec_FSum(hmm->e[i], hmm->K), 1., 0.00001) != eslOK) { esl_fatal("ERROR parsing HMM file, emit probs state %d don't sum to 1.", i); }
    esl_vec_FNorm(hmm->e[i], hmm->K);

    status = esl_fileparser_NextLine(efp);
    if((i < (hmm->M-1)) && (status != eslOK)) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");
  }
  *ret_hmm = hmm;

  esl_fileparser_Destroy(efp);
  return;
}