1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
|
/* Construct a training alignment/test sequences set from an MSA.
* Modified from HMMER's create-profmark.c.
*
* Usage:
* ./rmark-create <basename> <msa Stockholm file> <FASTA db>
* For example:
* ./rmark-create rmark3 /misc/data0/databases/Rfam/Rfam.seed /misc/data0/databases/rfamseq.fasta
*
* There are three types of sequences:
* 1. positives:
* - test sequences from the input <msa Stockholm file>.
* 2. negatives:
* - long pseudo-chromosome sequences, created by shuffling
* randomly chosen subsequences from <FASTA db>.
* 3. benchmark sequences:
* - negative sequences with >= 0 positives embedded
* within them
*
* Six output files are generated:
* <basename>.tbl - table summarizing the benchmark
* <basename>.msa - MSA queries, stockholm format
* <basename>.fa - benchmark sequences, fasta format
* <basename>.pos - table summarizing positive test set;
* their locations in the benchmark seqs
* <basename>.pfa - positive sequences, fasta format
* <basename>.ppos - table summarizing positive test seqs;
* their locations in the .pfa file
*
* The .pfa and .ppos files are for running a positive-only version
* of the benchmark, by searching only the positive test set. This
* is useful for quickly determining how many positive sequences
* pass a filter strategy, for example.
*
* EPN, Tue Jul 6 09:48:24 2010
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_composition.h"
#include "esl_distance.h"
#include "esl_fileparser.h"
#include "esl_getopts.h"
#include "esl_hmm.h"
#include "esl_msa.h"
#include "esl_msafile.h"
#include "esl_msacluster.h"
#include "esl_msaweight.h"
#include "esl_random.h"
#include "esl_randomseq.h"
#include "esl_sq.h"
#include "esl_sqio.h"
#include "esl_stack.h"
#include "esl_vectorops.h"
static char banner[] = "construct a rmark benchmark profile training/test set";
static char usage1[] = "[options] <basename> <msafile> <hmmfile>";
static char usage2[] = "[options] -S <basename> <msafile> <seqdb>";
static char usage3[] = "[options] --iid <basename> <msafile>\n";
#define SHUF_OPTS "--mono,--di,--markov0,--markov1" /* toggle group, seq shuffling options */
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgroup */
{ "-h", eslARG_NONE, FALSE, NULL, NULL, NULL,NULL, NULL, "help; show brief info on version and usage", 1 },
{ "-S", eslARG_NONE, FALSE, NULL, NULL, NULL,NULL, NULL, "do not generate with an HMM, shuffle seqs from <seqdb>", 1 },
{ "-1", eslARG_REAL, "0.60", NULL,"0<x<=1.0",NULL,NULL,NULL, "require all test seqs to have < x id to training", 1 },
{ "-2", eslARG_REAL, "0.70", NULL,"0<x<=1.0",NULL,NULL,NULL, "require all test seqs to have < x id to each other", 1 },
{ "-F", eslARG_REAL, "0.70", NULL,"0<x<=1.0",NULL,NULL,NULL, "filter out seqs <x*average length", 1 },
{ "-N", eslARG_INT, "10", NULL, NULL, NULL,NULL,NULL, "number of benchmark seqs", 1 },
{ "-L", eslARG_INT,"1000000",NULL,"n>0", NULL,NULL,NULL, "full length of benchmark seqs prior to test seq embedding", 1 },
{ "-C", eslARG_INT, "1000",NULL,"n>0", NULL,NULL,"--iid", "length of of <seqdb> seqs to extract and shuffle when making test seqs", 1 },
{ "-X", eslARG_REAL, "0.05", NULL,"0<x<=1.0",NULL,NULL,NULL, "maximum fraction of total test seq covered by positives", 1 },
{ "-R", eslARG_INT, "5", NULL,"n>0", NULL,NULL,NULL, "minimum number of training seqs per family", 1 },
{ "-E", eslARG_INT, "1", NULL,"n>0", NULL,NULL,NULL, "minimum number of test seqs per family", 1 },
/* Options controlling negative segment randomization method */
{ "--iid", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, "-S", "generate random iid sequence for negatives", 2 },
{ "--mono", eslARG_NONE, FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, shuffle preserving monoresidue composition", 2 },
{ "--di", eslARG_NONE, FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, shuffle preserving mono- and di-residue composition", 2 },
{ "--markov0", eslARG_NONE, FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, generate with 0th order Markov properties per input", 2 },
{ "--markov1", eslARG_NONE, FALSE, NULL, NULL, NULL, "-S", SHUF_OPTS, "with -S, generate with 1st order Markov properties per input", 2 },
/* Options forcing which alphabet we're working in (normally autodetected) */
{ "--amino", eslARG_NONE, FALSE, NULL, NULL, NULL,NULL,"--dna,--rna", "<msafile> contains protein alignments", 3 },
{ "--dna", eslARG_NONE, FALSE, NULL, NULL, NULL,NULL,"--amino,--rna", "<msafile> contains DNA alignments", 3 },
{ "--rna", eslARG_NONE, FALSE, NULL, NULL, NULL,NULL,"--amino,--dna", "<msafile> contains RNA alignments", 3 },
/* Other options */
{ "--minDPL", eslARG_INT, "100", NULL, NULL, NULL, NULL, NULL, "minimum segment length for DP shuffling", 4 },
{ "--seed", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "specify random number generator seed", 4 },
{ "--sub", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, "--sample", "look for train/test in msa subsets via greedy algorithm", 4 },
{ "--sample", eslARG_INT, FALSE, NULL, NULL, NULL, NULL, "-sub", "look for train/test in msa subsets via sampling, <n> samples", 4},
{ "--skip", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "w/--sub or --sample, skip partition test", 4 },
{ "--xtest", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "w/--sub or --sample, maximize |test|, not |train|+|test|", 4 },
{ "--nfile", eslARG_OUTFILE,FALSE,NULL, NULL, NULL, NULL, NULL, "save benchmark database *without* positives to <f>", 4 },
{ "--tfile", eslARG_OUTFILE,FALSE,NULL, NULL, NULL, NULL, NULL, "save orig/train/test alignments with renamed seqs to <f>", 4 },
{ 0,0,0,0,0,0,0,0,0,0 },
};
struct cfg_s {
ESL_ALPHABET *abc; /* biological alphabet */
ESL_RANDOMNESS *r; /* random number generator */
ESL_HMM *hmm; /* HMM for generating background seqs */
double fragfrac; /* seqs less than x*avg length are removed from alignment */
double idthresh1; /* fractional identity threshold for train/test split */
double idthresh2; /* fractional identity threshold for selecting test seqs */
int min_ntrain; /* minimum number of sequences in the training set */
int min_ntest; /* minimum number of sequences in the test set */
FILE *out_msafp; /* output: training MSAs */
FILE *out_bmkfp; /* output: benchmark sequences */
FILE *out_posfp; /* output: positive sequences */
FILE *possummfp; /* output: summary table of the positive test set in the benchmark seqs */
FILE *ppossummfp; /* output: summary table of the positive-only test set */
FILE *negsummfp; /* output: summary table of the negative test set */
FILE *tblfp; /* output: summary table of the training set alignments */
FILE *nseqfp; /* output: (optional) negative sequences only (without embedded positives) */
FILE *tfp; /* output: (optional) alignments with train/test seqs renamed */
ESL_SQFILE *dbfp; /* source database for negatives */
int db_nseq; /* # of sequences in the db */
int nneg; /* number of negative long sequences we'll create */
int negL; /* length of long negative sequences before test seqs get embedded */
int negchunkL; /* length of each chunk that make up the long negative sequences */
double fq[20]; /* background frequency distribution, if we're making iid negatives */
};
static int process_dbfile (struct cfg_s *cfg, char *dbfile, int dbfmt);
static int remove_fragments (struct cfg_s *cfg, ESL_MSA *msa, ESL_MSA **ret_filteredmsa, int *ret_nfrags);
static int separate_sets (struct cfg_s *cfg, ESL_MSA *msa, int **ret_i_am_train, int **ret_i_am_test);
static int find_sets_greedily (struct cfg_s *cfg, ESL_MSA *msa, int do_maxtest, int **ret_i_am_train, int **ret_i_am_test);
static int find_sets_by_sampling(struct cfg_s *cfg, ESL_MSA *msa, int nsamples, int do_maxtest, int **ret_i_am_train, int **ret_i_am_test);
static int synthesize_negatives_and_embed_positives(ESL_GETOPTS *go, struct cfg_s *cfg, ESL_SQ **posseqs, int npos);
static int set_random_segment (ESL_GETOPTS *go, struct cfg_s *cfg, FILE *logfp, ESL_DSQ *dsq, int L);
static void read_hmmfile(char *filename, ESL_HMM **ret_hmm);
static void
cmdline_failure(char *argv0, char *format, ...)
{
va_list argp;
va_start(argp, format);
vfprintf(stderr, format, argp);
va_end(argp);
esl_usage(stdout, argv0, usage1);
esl_usage(stdout, argv0, usage2);
esl_usage(stdout, argv0, usage3);
printf("\nTo see more help on available options, do %s -h\n\n", argv0);
exit(1);
}
static void
cmdline_help(char *argv0, ESL_GETOPTS *go)
{
esl_banner(stdout, argv0, banner);
esl_usage (stdout, argv0, usage1);
esl_usage (stdout, argv0, usage2);
puts("\n where general options are:");
esl_opt_DisplayHelp(stdout, go, 1, 2, 80);
puts("\n options controlling segment randomization method:");
esl_opt_DisplayHelp(stdout, go, 2, 2, 80);
puts("\n options declaring a particular alphabet:");
esl_opt_DisplayHelp(stdout, go, 3, 2, 80);
puts("\n other options:");
esl_opt_DisplayHelp(stdout, go, 4, 2, 80);
exit(0);
}
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = NULL; /* command line configuration */
struct cfg_s cfg; /* application configuration */
char *basename= NULL; /* base of the output file names */
char *alifile = NULL; /* alignment file name */
char *dbfile = NULL; /* name of seq db file */
char *hmmfile = NULL;/* name of hmm file */
char outfile[256]; /* name of an output file */
int alifmt; /* format code for alifile */
int dbfmt; /* format code for dbfile */
ESL_MSAFILE *afp = NULL; /* open alignment file */
ESL_MSA *origmsa = NULL; /* one multiple sequence alignment */
ESL_MSA *msa = NULL; /* MSA after frags are removed */
ESL_MSA *trainmsa= NULL; /* training set, aligned */
char *tmpstr = NULL; /* #=RF annotation line */
ESL_SQ *train_consensus = NULL;
ESL_MSA *tmpmsa= NULL; /* tmp aligned training/testing set, used if --tfile */
int *i_am_train = NULL; /* [0..msa->nseq-1]: 1 if train seq, 0 if not */
int *i_am_test = NULL; /* [0..msa->nseq-1]: 1 if test seq, 0 if not */
int nfrags; /* # of fragments removed */
int ntestseq; /* # of test sequences for cur fam */
int ntrainseq; /* # of train sequences for cur fam */
int nali; /* number of alignments read */
int npos; /* number of positive test sequences stored */
int npos_this_msa; /* number of positive test sequences stored for current msa */
ESL_SQ **posseqs=NULL; /* all the test seqs, to be embedded */
int64_t poslen_total; /* total length of all positive seqs */
double avgid;
double pctid;
void *ptr;
int i, traini, testi;
int status; /* easel return code */
/* Parse command line */
go = esl_getopts_Create(options);
if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK) cmdline_failure(argv[0], "Failed to parse command line: %s\n", go->errbuf);
if (esl_opt_VerifyConfig(go) != eslOK) cmdline_failure(argv[0], "Error in app configuration: %s\n", go->errbuf);
if (esl_opt_GetBoolean(go, "-h")) cmdline_help(argv[0], go);
if (( esl_opt_GetBoolean(go, "--iid") && esl_opt_ArgNumber(go) != 2) ||
(! esl_opt_GetBoolean(go, "--iid") && esl_opt_ArgNumber(go) != 3)) {
cmdline_failure(argv[0], "Incorrect number of command line arguments\n");
}
basename = esl_opt_GetArg(go, 1);
alifile = esl_opt_GetArg(go, 2);
if(! esl_opt_GetBoolean(go, "--iid")) {
if(esl_opt_GetBoolean(go, "-S")) dbfile = esl_opt_GetArg(go, 3);
else hmmfile = esl_opt_GetArg(go, 3);
}
alifmt = eslMSAFILE_STOCKHOLM;
dbfmt = eslSQFILE_FASTA;
/* check for incompatible option combinations */
if((! esl_opt_IsOn(go, "--sub")) && (! esl_opt_IsOn(go, "--sample"))) {
if(esl_opt_IsOn(go, "--skip")) cmdline_failure(argv[0], "--skip requires --sub or --sample");
if(esl_opt_IsOn(go, "--xtest")) cmdline_failure(argv[0], "--xtest requires --sub or --sample");
}
/* Set up the configuration structure shared amongst functions here */
if (esl_opt_IsDefault(go, "--seed")) cfg.r = esl_randomness_CreateTimeseeded();
else cfg.r = esl_randomness_Create(esl_opt_GetInteger(go, "--seed"));
cfg.abc = NULL; /* until we open the MSA file, below */
cfg.hmm = NULL;
cfg.fragfrac = esl_opt_GetReal(go, "-F");
cfg.idthresh1 = esl_opt_GetReal(go, "-1");
cfg.idthresh2 = esl_opt_GetReal(go, "-2");
cfg.min_ntrain = esl_opt_GetInteger(go, "-R");
cfg.min_ntest = esl_opt_GetInteger(go, "-E");
cfg.nneg = esl_opt_GetInteger(go, "-N");
cfg.negL = esl_opt_GetInteger(go, "-L");
cfg.negchunkL = esl_opt_GetInteger(go, "-C");
/* Open the output files */
if (snprintf(outfile, 256, "%s.msa", basename) >= 256) esl_fatal("Failed to construct output MSA file name");
if ((cfg.out_msafp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open MSA output file %s\n", outfile);
if (snprintf(outfile, 256, "%s.fa", basename) >= 256) esl_fatal("Failed to construct output FASTA file name");
if ((cfg.out_bmkfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open FASTA output file %s\n", outfile);
if (snprintf(outfile, 256, "%s.pfa", basename) >= 256) esl_fatal("Failed to construct output positive FASTA file name");
if ((cfg.out_posfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open positive FASTA output file %s\n", outfile);
if (snprintf(outfile, 256, "%s.pos", basename) >= 256) esl_fatal("Failed to construct pos test set summary file name");
if ((cfg.possummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open pos test set summary file %s\n", outfile);
if (snprintf(outfile, 256, "%s.ppos", basename) >= 256) esl_fatal("Failed to construct pos-only test set summary file name");
if ((cfg.ppossummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open pos-only test set summary file %s\n", outfile);
if (snprintf(outfile, 256, "%s.tbl", basename) >= 256) esl_fatal("Failed to construct benchmark table file name");
if ((cfg.tblfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open benchmark table file %s\n", outfile);
if (esl_opt_GetBoolean(go, "-S")) {
if (snprintf(outfile, 256, "%s.neg", basename) >= 256) esl_fatal("Failed to construct neg test set summary file name");
if ((cfg.negsummfp = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open neg test set summary file %s\n", outfile);
}
else cfg.negsummfp = NULL;
if (esl_opt_IsOn(go, "--nfile")) {
if((cfg.nseqfp = fopen(esl_opt_GetString(go, "--nfile"), "w")) == NULL) esl_fatal("Failed to open negative sequence file %s\n", esl_opt_GetString(go, "--nfile"));
}
else cfg.nseqfp = NULL;
if (esl_opt_IsOn(go, "--tfile")) {
if((cfg.tfp = fopen(esl_opt_GetString(go, "--tfile"), "w")) == NULL) esl_fatal("Failed to open alignment file %s\n", esl_opt_GetString(go, "--tfile"));
}
else cfg.tfp = NULL;
/* Open the MSA file */
if (esl_opt_GetBoolean(go, "--amino")) cfg.abc = esl_alphabet_Create(eslAMINO);
else if (esl_opt_GetBoolean(go, "--dna")) cfg.abc = esl_alphabet_Create(eslDNA);
else if (esl_opt_GetBoolean(go, "--rna")) cfg.abc = esl_alphabet_Create(eslRNA);
if((status = esl_msafile_Open(&(cfg.abc), alifile, NULL, alifmt, NULL, &afp)) != eslOK) {
esl_msafile_OpenFailure(afp, status);
}
if (cfg.abc->type == eslAMINO) esl_composition_SW34(cfg.fq);
else esl_vec_DSet(cfg.fq, cfg.abc->K, 1.0 / (double) cfg.abc->K);
/* Open and read the HMM file of database file, depending on if -S was enabled or not */
if(hmmfile != NULL) read_hmmfile(hmmfile, &(cfg.hmm));
if(dbfile != NULL) process_dbfile(&cfg, dbfile, dbfmt);
/* Read and process MSAs one at a time */
nali = 0;
npos = 0;
poslen_total = 0;
while ((status = esl_msafile_Read(afp, &origmsa)) == eslOK)
{
npos_this_msa = 0;
if(origmsa->name == NULL) esl_fatal("All msa's must have a valid name (#=GC ID), alignment %d does not.", nali);
esl_msa_ConvertDegen2X(origmsa);
remove_fragments(&cfg, origmsa, &msa, &nfrags);
/* Test 1: can we define train/test sets such that our thresholds
* are satisfied (most similar train/test pair < cfg->idthresh1,
* and most similar test/test pair < cfg->idthresh2) and
* _all_ the msa's sequences are either:
* - in the training set OR
* - in the test set OR
* - more than cfg->idthresh2 similar to >=1 sequences in the test set
*/
if(! esl_opt_GetBoolean(go, "--skip")) {
separate_sets (&cfg, msa, &i_am_train, &i_am_test);
ntrainseq = esl_vec_ISum(i_am_train, msa->nseq);
ntestseq = esl_vec_ISum(i_am_test, msa->nseq);
}
else { /* --skip enabled, we skipped test 1 */
ntestseq = ntrainseq = 0;
}
/* if --sub or --sample, check if we should look for subsets of
* the seqs in the msa that satisfy our thresholds */
if((esl_opt_IsOn(go, "--sub") || esl_opt_IsOn(go, "--sample")) &&
((ntestseq < cfg.min_ntest) || (ntrainseq < cfg.min_ntrain)))
{ /* Test 2: Is there a subset of the sequences in the msa
* that would satisfy our thresholds (most similar
* train/test pair < cfg->idthresh1, and most
* similar test/test pair < cfg->idthresh2) and that
* include a sufficient number of train/test seqs.
*
* We either use a greedy deterministic algorithm (by
* default) to look for these subsets, or we use a sampling
* algorithm (non-deterministic, enabled with --sample).
*/
if(esl_opt_IsOn(go, "--sub")) find_sets_greedily (&cfg, msa, esl_opt_GetBoolean(go, "--xtest"), &i_am_train, &i_am_test);
else find_sets_by_sampling(&cfg, msa, esl_opt_GetInteger(go, "--sample"), esl_opt_GetBoolean(go, "--xtest"), &i_am_train, &i_am_test);
ntrainseq = esl_vec_ISum(i_am_train, msa->nseq);
ntestseq = esl_vec_ISum(i_am_test, msa->nseq);
/* we did find a satisfactory set (find_sets() checks that
* we have a sufficient number of test/train seqs, but
* check, to be sure */
if ((ntestseq < cfg.min_ntest) || (ntrainseq < cfg.min_ntrain))
esl_fatal("find_sets() returned insufficient train/test sets!");
}
if ((ntestseq >= cfg.min_ntest) && (ntrainseq >= cfg.min_ntrain)) {
/* We have a valid train/test set, that either satisfied
* test 1 in separate_sets() or satisfied test 2 from
* find_sets(). Extract and write out the training alignment. */
if ((status = esl_msa_SequenceSubset(msa, i_am_train, &trainmsa)) != eslOK) goto ERROR;
esl_msa_MinimGaps(trainmsa, NULL, NULL, FALSE);
esl_msafile_Write(cfg.out_msafp, trainmsa, eslMSAFILE_STOCKHOLM);
esl_dst_XAverageId(cfg.abc, trainmsa->ax, trainmsa->nseq, 10000, &avgid); /* 10000 is max_comparisons, before sampling kicks in */
fprintf(cfg.tblfp, "%-20s %3.0f%% %6d %6d %6d %6d %6d\n", msa->name, 100.*avgid, (int) trainmsa->alen, msa->nseq, nfrags, trainmsa->nseq, ntestseq);
nali++;
if(cfg.tfp != NULL) {
/* output 2 more alignments per family:
* 1. training alignment with seqs renamed as "TRAIN.<fam>.<i>"
* 2. test alignment with seqs renamed as "<fam>/<i>"
*/
/* Rename seqs */
for(i = 0, traini = 0, testi = 0; i < msa->nseq; i++) {
if(i_am_train[i]) {
esl_msa_FormatSeqDescription(msa, i, msa->sqname[i]);
esl_msa_FormatSeqName(msa, i, "TRAIN.%s.%d", msa->name, traini+1);
traini++;
}
if(i_am_test[i]) {
esl_msa_FormatSeqDescription(msa, i, msa->sqname[i]);
esl_msa_FormatSeqName(msa, i, "%s/%d", msa->name, testi+1);
testi++;
}
}
/* Output train subset, note we don't use trainmsa, b/c it's has all gap columns removed */
if ((status = esl_msa_SequenceSubset(msa, i_am_train, &tmpmsa)) != eslOK) goto ERROR;
esl_msa_FormatName(tmpmsa, "TRAIN.%s", msa->name);
esl_msafile_Write(cfg.tfp, tmpmsa, eslMSAFILE_PFAM);
/* capture the consensus of the msa into train_consensus, for use in calculating pct_id later */
status = esl_msaweight_PB(tmpmsa);
ESL_REALLOC(tmpstr, msa->alen + 1 );
esl_msa_ReasonableRF(tmpmsa, 0.5, TRUE, tmpstr);
train_consensus = esl_sq_CreateFrom(msa->name, tmpstr, msa->name, msa->name, NULL);
esl_sq_Digitize(msa->abc, train_consensus);
/* Output test subset */
if ((status = esl_msa_SequenceSubset(msa, i_am_test, &tmpmsa)) != eslOK) goto ERROR;
esl_msa_FormatName(tmpmsa, "TEST.%s", msa->name);
esl_msafile_Write(cfg.tfp, tmpmsa, eslMSAFILE_PFAM);
esl_msa_Destroy(tmpmsa);
}
/* Save the positive test sequences, we'll embed these
* in the long test sequences later */
if(npos > 0) { ESL_RALLOC(posseqs, ptr, sizeof(ESL_SQ *) * (npos + ntestseq)); }
else { ESL_ALLOC (posseqs, sizeof(ESL_SQ *) * ntestseq); }
for(i = 0; i < msa->nseq; i++) {
if(i_am_test[i]) {
esl_sq_FetchFromMSA(msa, i, &(posseqs[npos]));
poslen_total += posseqs[npos]->n;
/* Sequence description is set as a concatenation of the
* family name and the sequence index in this family,
* separated by a '/', which never appears in an Rfam
* name. For example: "tRNA/3" for the third tRNA.
*/
esl_sq_FormatDesc(posseqs[npos], "%s/%d", msa->name, npos_this_msa+1);
/* Write the sequence to the positives-only output file, and its info the positives-only table */
esl_sqio_Write(cfg.out_posfp, posseqs[npos], eslSQFILE_FASTA, FALSE);
if(cfg.tfp != NULL) {
esl_dst_XPairId(msa->abc, train_consensus->dsq, msa->ax[i], &pctid, NULL, NULL);
fprintf(cfg.ppossummfp, "%-35s %-35s %-35s %8d %8" PRId64 " %.0f\n",
posseqs[npos]->desc, /* description, this has been set earlier as the msa name plus seq idx (e.g. "tRNA/3" for 3rd tRNA in the set) */
posseqs[npos]->name, /* positive sequence name (from input MSA) */
posseqs[npos]->name, /* again, positive sequence name (from input MSA) */
1, posseqs[npos]->n, /* start, stop */
100*pctid);
} else {
fprintf(cfg.ppossummfp, "%-35s %-35s %-35s %8d %8" PRId64 "\n",
posseqs[npos]->desc, /* description, this has been set earlier as the msa name plus seq idx (e.g. "tRNA/3" for 3rd tRNA in the set) */
posseqs[npos]->name, /* positive sequence name (from input MSA) */
posseqs[npos]->name, /* again, positive sequence name (from input MSA) */
1, posseqs[npos]->n); /* start, stop */
}
npos++;
npos_this_msa++;
}
}
}
if(i_am_train != NULL) free(i_am_train);
if(i_am_test != NULL) free(i_am_test);
if(trainmsa != NULL) esl_msa_Destroy(trainmsa);
trainmsa = NULL;
esl_msa_Destroy(origmsa);
esl_msa_Destroy(msa);
}
if (status != eslEOF) esl_msafile_ReadFailure(afp, status);
else if (nali == 0) esl_fatal("No alignments found in file %s\n", alifile);
/* Make sure we summed length of the positives isn't above the max allowed */
if(poslen_total > (esl_opt_GetReal(go, "-X") * cfg.nneg * cfg.negL)) {
esl_fatal("positive seqs summed length is %.4f fraction of the test sequences, max allowed is %.4f (adjust with -X)\n",
((float) poslen_total / (float) (cfg.nneg * cfg.negL)), esl_opt_GetReal(go, "-X"));
}
/* Generate the negative sequences and embed the positives to create the benchmark sequences */
if (nali > 0)
if((status = synthesize_negatives_and_embed_positives(go, &cfg, posseqs, npos)) != eslOK) esl_fatal("Allocation error. Out of memory.");
fclose(cfg.out_msafp);
fclose(cfg.out_bmkfp);
fclose(cfg.out_posfp);
fclose(cfg.possummfp);
fclose(cfg.ppossummfp);
if(cfg.negsummfp != NULL) fclose(cfg.negsummfp);
if(cfg.nseqfp != NULL) fclose(cfg.nseqfp);
if(cfg.tfp != NULL) fclose(cfg.tfp);
fclose(cfg.tblfp);
esl_randomness_Destroy(cfg.r);
esl_alphabet_Destroy(cfg.abc);
esl_msafile_Close(afp);
esl_getopts_Destroy(go);
return 0;
ERROR:
esl_fatal("Allocation error. Out of memory");
}
/* Open the source sequence database for negative subseqs;
* upon return, cfg->dbfp is open (digital, SSI indexed);
* and cfg->db_nseq is set.
*/
static int
process_dbfile(struct cfg_s *cfg, char *dbfile, int dbfmt)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
int status;
int nread; /* number of sequences of at least length cfg->negchunkL read from db */
int nrequired; /* number of sequences of at least length cfg->negchunkL required in db */
/* Open the sequence file in digital mode */
status = esl_sqfile_OpenDigital(cfg->abc, dbfile, dbfmt, NULL, &(cfg->dbfp));
if (status == eslENOTFOUND) esl_fatal("No such file %s", dbfile);
else if (status == eslEFORMAT) esl_fatal("Format of seqfile %s unrecognized.", dbfile);
else if (status == eslEINVAL) esl_fatal("Can't autodetect stdin or .gz.");
else if (status != eslOK) esl_fatal("Open failed, code %d.", status);
/* Read sequence file until we know it contains enough sequences to
* sample from to create the benchmark sequences if we sampled
* without replacement (even though we sample with replacement, so
* just 1 seq of length cfg->negchunkL would suffice).
* We don't read the whole sequence file b/c it could be very
* large (rfamseq is >100 Gb) and that would take a long time.
*/
nread = 0;
nrequired = ((cfg->negL / cfg->negchunkL) + 1) * cfg->nneg;
while ((nread < nrequired) &&
((status = esl_sqio_ReadInfo(cfg->dbfp, sq)) == eslOK)) {
if(sq->L > cfg->negchunkL) nread++;
esl_sq_Reuse(sq);
}
if (nread < nrequired) { /* there weren't enough seqs of sufficient length */
if(status == eslEOF) esl_fatal("Only read %d seqs of length %d in seq db, %d required", nread, cfg->negchunkL, nrequired);
else esl_fatal("Something went wrong with reading the seq db");
}
esl_sqfile_Position(cfg->dbfp, 0); /* rewind */
/* Open SSI index */
if (esl_sqfile_OpenSSI(cfg->dbfp, NULL) != eslOK) esl_fatal("Failed to open SSI index file");
/* set number of seqs in db; trust the index */
cfg->db_nseq = cfg->dbfp->data.ascii.ssi->nprimary;
esl_sq_Destroy(sq);
return eslOK;
}
/* Label all sequence fragments < fragfrac of average raw length */
static int
remove_fragments(struct cfg_s *cfg, ESL_MSA *msa, ESL_MSA **ret_filteredmsa, int *ret_nfrags)
{
int *useme = NULL;
double len = 0.0;
int i;
int status;
/* min length is cfg->fragfrac * average length */
for (i = 0; i < msa->nseq; i++)
len += esl_abc_dsqrlen(msa->abc, msa->ax[i]);
len *= cfg->fragfrac / (double) msa->nseq;
ESL_ALLOC(useme, sizeof(int) * msa->nseq);
for (i = 0; i < msa->nseq; i++)
useme[i] = (esl_abc_dsqrlen(msa->abc, msa->ax[i]) < len) ? 0 : 1;
if ((status = esl_msa_SequenceSubset(msa, useme, ret_filteredmsa)) != eslOK) goto ERROR;
*ret_nfrags = msa->nseq - esl_vec_ISum(useme, msa->nseq);
free(useme);
return eslOK;
ERROR:
if (useme != NULL) free(useme);
*ret_filteredmsa = NULL;
return status;
}
/* Test 1. Determine if valid training and test sets exist in the MSA
* by testing if all the following criteria are met:
* 1. no train/test sequence pair is > cfg->idthresh1 fractionally
* identical (controllable with -1).
* 2. no test sequence pair is > cfg->idthresh2 fractionally
* identical (controllable with -2).
* 3. all other msa sequences not in train nor test are
* at least cfg->idthresh2 fractionally identical
* with >= 1 test sequence.
*
* ret_i_am_train - [0..msa->nseq-1]: 1 if a training seq, 0 if not
* ret_i_am_test - [0..msa->nseq-1]: 1 if a test seq, 0 if not
*/
static int
separate_sets(struct cfg_s *cfg, ESL_MSA *msa, int **ret_i_am_train, int **ret_i_am_test)
{
ESL_MSA *trainmsa = NULL;
ESL_MSA *test_msa = NULL;
int *assignment = NULL;
int *nin = NULL;
int *i_am_train = NULL;
int *i_am_test = NULL;
int *i_am_possibly_test = NULL;
int nc = 0;
int c;
int ctrain; /* index of the cluster that becomes the training alignment */
int nskip;
int i, i2;
int status;
ESL_ALLOC(i_am_train, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_possibly_test, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_test, sizeof(int) * msa->nseq);
if ((status = esl_msacluster_SingleLinkage(msa, cfg->idthresh1, &assignment, &nin, &nc)) != eslOK) goto ERROR;
ctrain = esl_vec_IArgMax(nin, nc);
for (i = 0; i < msa->nseq; i++) i_am_train[i] = (assignment[i] == ctrain) ? 1 : 0;
if ((status = esl_msa_SequenceSubset(msa, i_am_train, &trainmsa)) != eslOK) goto ERROR;
/* If all the seqs went into the training msa, none are left for testing; we're done here */
if (trainmsa->nseq == msa->nseq) {
esl_vec_ISet(i_am_train, msa->nseq, 0);
esl_vec_ISet(i_am_test, msa->nseq, 0);
free(assignment);
free(nin);
free(i_am_possibly_test);
esl_msa_Destroy(trainmsa);
*ret_i_am_train = i_am_train;
*ret_i_am_test = i_am_test;
return eslOK;
}
/* Put all the other sequences into an MSA of their own; from these, we'll
* choose test sequences.
*/
for (i = 0; i < msa->nseq; i++) i_am_possibly_test[i] = (assignment[i] != ctrain) ? 1 : 0;
if ((status = esl_msa_SequenceSubset(msa, i_am_possibly_test, &test_msa)) != eslOK) goto ERROR;
/* Cluster those test sequences. */
free(nin); nin = NULL;
free(assignment); assignment = NULL;
esl_vec_ISet(i_am_test, msa->nseq, 0);
if ((status = esl_msacluster_SingleLinkage(test_msa, cfg->idthresh2, &assignment, &nin, &nc)) != eslOK) goto ERROR;
for (c = 0; c < nc; c++) {
nskip = esl_rnd_Roll(cfg->r, nin[c]); /* pick a random seq in this cluster to be the test. */
for (i=0, i2=0; i < msa->nseq; i++) /* i is idx in orig msa, i2 is idx in test_msa */
if(i_am_possibly_test[i]) { /* i is in test_msa */
if (assignment[i2] == c) {
if (nskip == 0) { /* this sequence will be a test seq, set i_am_test[i] as 1 */
i_am_test[i] = 1;
break;
}
else {
nskip--;
}
}
i2++;
}
}
esl_msa_Destroy(test_msa);
free(nin);
free(assignment);
free(i_am_possibly_test);
*ret_i_am_train = i_am_train;
*ret_i_am_test = i_am_test;
return eslOK;
ERROR:
if (i_am_train != NULL) free(i_am_train);
if (i_am_test != NULL) free(i_am_test);
if (i_am_possibly_test != NULL) free(i_am_possibly_test);
if (assignment != NULL) free(assignment);
if (nin != NULL) free(nin);
esl_msa_Destroy(trainmsa);
esl_msa_Destroy(test_msa);
*ret_i_am_train = NULL;
*ret_i_am_test = NULL;
return status;
}
/* Test 2. Greedy approach:
* Use a greedy, deterministic algorithm to see if we
* can define a subset of msa sequences (call it sub_msa)
* that comprise valid train/test sets of sufficient sizes
* that satisfy:
*
* 1. no train/test sequence pair is > cfg->idthresh1
* fractionally identical (controllable with -1).
* 2. no test sequence pair is > cfg->idthresh2
* fractionally identical (controllable with -2).
*
* The algorithm for checking is greedy and not guaranteed to find a
* submsa if it exists. Likewise, it is not guaranteed to find the
* largest such submsa.
*
* Briefly, the algorithm takes each msa sequence i, creates the
* training set that is compatible with i being a test sequence, and
* then adds all remaining (non-training) sequences j that are
* compatible with i (id[i][j] < cfg->idthresh2) to the test set. The
* set of sequences in the testing and training set define the submsa.
* By default, the submsa that satisfies 1 and 2 and includes the
* largest total number of sequences (|train| + |test|) is chosen and
* the corresponding training and testing sets are returned. With
* --xtest, the submsa with the largest number of test sequences is
* chosen instead.
*/
static int
find_sets_greedily(struct cfg_s *cfg, ESL_MSA *msa, int do_xtest, int **ret_i_am_train, int **ret_i_am_test)
{
int *i_am_test = NULL;
int *i_am_train = NULL;
int *i_am_best_test = NULL;
int *i_am_best_train = NULL;
ESL_DMATRIX *S = NULL; /* pairwise identity matrix */
int i, j, k;
int ntest, ntrain;
int nbest_test, nbest_train;
int status;
int add_j_to_test;
ESL_ALLOC(i_am_test, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_train, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_best_test, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_best_train, sizeof(int) * msa->nseq);
/* initialize best_train and best_test sets */
esl_vec_ISet(i_am_best_train, msa->nseq, FALSE);
esl_vec_ISet(i_am_best_test, msa->nseq, FALSE);
nbest_train = 0;
nbest_test = 0;
/* get pairwise ID matrix */
if ((status = esl_dst_XPairIdMx(msa->abc, msa->ax, msa->nseq, &S)) != eslOK) goto ERROR;
for(i = 0; i < msa->nseq; i++) {
/* initialize train and test sets for this seq */
esl_vec_ISet(i_am_train, msa->nseq, FALSE);
esl_vec_ISet(i_am_test, msa->nseq, FALSE);
i_am_test[i] = TRUE; /* i is in the test set */
ntrain = 0;
ntest = 1;
/* Determine all seqs that are < cfg->idthresh1 identical to i,
* this will be the largest possible training set that is consistent
* with i being in the test set.
*/
for(j = 0; j < msa->nseq; j++) {
if(S->mx[i][j] < cfg->idthresh1) {
i_am_train[j] = TRUE;
ntrain++;
}
}
/* If the training set is big enough, try to add all seqs not in
* the training set to the test set while maintaining the property
* that all seqs in the test set must be less than cfg->idthresh1
* similar to all seqs in the training set and must be at most
* cfg->idthresh2 similar to all seqs in the test set. */
if(ntrain >= cfg->min_ntrain) {
for(j = 0; j < msa->nseq; j++) {
if(i_am_train[j] == FALSE && i_am_test[j] == FALSE) {
add_j_to_test = TRUE;
for(k = 0; k < msa->nseq; k++) {
if(((i_am_train[k] == TRUE) && (S->mx[j][k] >= cfg->idthresh1)) || /* too similar to a training seq */
((i_am_test[k] == TRUE) && (S->mx[j][k] >= cfg->idthresh2))) { /* too similar to a test seq */
add_j_to_test = FALSE;
break;
}
}
if(add_j_to_test == TRUE) {
i_am_test[j] = TRUE;
ntest++;
}
}
}
/* printf("i: %5d ntrain: %5d ntest: %5d nbest_train: %5d nbest_test: %5d\n",
i, ntrain, ntest, nbest_train, nbest_test); */
/* If training set is larger than test set, and we have at least
* the minimum allowed number of test seqs, then check if this
* is our best set of train and test clusters thus far found, if
* so, update best_test and best_train. Where the 'best' is
* defined as either:
* maximum of |train| + |test| (default)
* OR maximum of |test| (enabled with --xtest)
*/
if((ntrain > ntest) && (ntest >= cfg->min_ntest)) { /* training and test set are sufficiently large */
if((( do_xtest) && (ntest > nbest_test)) ||
((! do_xtest) && ((ntrain+ntest) > (nbest_train+nbest_test)))) {
esl_vec_ICopy(i_am_train, msa->nseq, i_am_best_train);
esl_vec_ICopy(i_am_test, msa->nseq, i_am_best_test);
nbest_train = ntrain;
nbest_test = ntest;
}
}
}
} /* end of for(i = 0; i < msa->nseq; i++) */
if(nbest_train == 0 || nbest_test == 0) {
esl_vec_ISet(i_am_best_train, msa->nseq, 0);
esl_vec_ISet(i_am_best_test, msa->nseq, 0);
}
else {
;/* printf("Success! train: %d seqs test: %d seqs\n", nbest_train, nbest_test); */
}
*ret_i_am_train = i_am_best_train;
*ret_i_am_test = i_am_best_test;
free(i_am_train);
free(i_am_test);
esl_dmatrix_Destroy(S);
return eslOK;
ERROR:
if (i_am_train != NULL) free(i_am_train);
if (i_am_test != NULL) free(i_am_test);
if (i_am_best_train != NULL) free(i_am_best_train);
if (i_am_best_test != NULL) free(i_am_best_test);
esl_dmatrix_Destroy(S);
*ret_i_am_train = NULL;
*ret_i_am_test = NULL;
return status;
}
/* Test 2. Sampling approach:
* Sample sequences in a random order, adding them to growing
* test/train sets to see if we can define valid train/test
* sets of sufficient sizes that satisfy:
*
* 1. no train/test sequence pair is > cfg->idthresh1
* fractionally identical (controllable with -1).
* 2. no test sequence pair is > cfg->idthresh2
* fractionally identical (controllable with -2).
*
* The algorithm for is not guaranteed to find a submsa if it
* exists. Likewise, it is not guaranteed to find the largest such
* submsa.
*
* Briefly, the approach is, for each sample, to randomly select a
* sequence i and define it as the first test sequence. Then look at
* all other sequences in random order. For each, if it is less than
* cfg->idthresh1 fractionally identical to all existing test
* sequences, add it to the training set. Else if it is less than
* cfg->idthresh1 fractionally identical to all existing training
* sequences, then add it to the test set. When finished, remove
* redundancy from the test set such that no two test sequences
* are more than cfg->idthresh2 fractionally identical.
*
* By default, the train/test set resulting from any sample that
* satisfies 1 and 2 and includes the largest total number of
* sequences (|train| + |test|) is chosen and the corresponding
* training and testing sets are returned. With --xtest, the
* train/test set with the largest number of test sequences is chosen
* instead.
*/
static int
find_sets_by_sampling(struct cfg_s *cfg, ESL_MSA *msa, int nsamples, int do_maxtest, int **ret_i_am_train, int **ret_i_am_test)
{
ESL_MSA *test_msa = NULL;
int *i_am_test = NULL;
int *i_am_train = NULL;
int *i_am_best_test = NULL;
int *i_am_best_train = NULL;
int *curlist = NULL;
int *test_msa2msa = NULL;
int *assignment = NULL;
int *nin = NULL;
int n, i, j, k;
int ntest, ntrain;
int nbest_test, nbest_train;
int status;
int tmp;
int ctr;
int nc = 0;
int c, p;
int nskip;
float maxid_train;
float maxid_test;
ESL_DMATRIX *S; /* pairwise identity matrix */
ESL_ALLOC(i_am_test, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_train, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_best_test, sizeof(int) * msa->nseq);
ESL_ALLOC(i_am_best_train, sizeof(int) * msa->nseq);
ESL_ALLOC(curlist, sizeof(int) * msa->nseq);
/* initialize best_train and best_test sets */
esl_vec_ISet(i_am_best_train, msa->nseq, FALSE);
esl_vec_ISet(i_am_best_test, msa->nseq, FALSE);
nbest_train = 0;
nbest_test = 0;
/* get pairwise ID matrix */
if ((status = esl_dst_XPairIdMx(msa->abc, msa->ax, msa->nseq, &S)) != eslOK) goto ERROR;
for(n = 0; n < nsamples; n++) {
i = esl_rnd_Roll(cfg->r, msa->nseq); /* pick a random seq to seed the test set */
/* initialize train and test sets for this seq */
esl_vec_ISet(i_am_train, msa->nseq, FALSE);
esl_vec_ISet(i_am_test, msa->nseq, FALSE);
i_am_test[i] = TRUE; /* i is in the test set */
ntrain = 0;
ntest = 1;
for(k = 0; k < msa->nseq; k++) curlist[k] = k;
for(ctr = 0; ctr < msa->nseq; ctr++) {
/* choose next seq to evaluate */
p = esl_rnd_Roll(cfg->r, msa->nseq - ctr);
j = curlist[p];
/* update curlist, this ensures we never sample the same j twice */
for(k = p; k < (msa->nseq-1); k++) curlist[k] = curlist[k+1];
curlist[msa->nseq-1] = -1;
/* find the fractional identity of j's nearest neighbors in the current
* test set and training set */
if(j != i) { /* skip when j == i, it's already in the test set */
if(i_am_test[j] || i_am_train[j]) esl_fatal("double picked %d on sample %d\n", j, n);
maxid_train = maxid_test = 0.;
for(k = 0; k < msa->nseq; k++) {
if((i_am_train[k] == TRUE) && (S->mx[j][k] > maxid_train)) { maxid_train = S->mx[j][k]; }
if((i_am_test[k] == TRUE) && (S->mx[j][k] > maxid_test)) { maxid_test = S->mx[j][k]; }
}
if (maxid_test < cfg->idthresh1) { i_am_train[j] = TRUE; ntrain++; } /* add j to training set */
else if(maxid_train < cfg->idthresh1) { i_am_test[j] = TRUE; ntest++; } /* add j to testing set */
}
}
/* if ntest > ntrain, swap the sets */
if(ntest > ntrain) {
for(j = 0; j < msa->nseq; j++) {
tmp = i_am_train[j];
i_am_train[j] = i_am_test[j];
i_am_test[j] = tmp;
}
tmp = ntest;
ntest = ntrain;
ntrain = tmp;
}
/* sanity check */
for(k = 0; k < msa->nseq; k++) { if(i_am_test[k] && i_am_train[k]) esl_fatal("ERROR %d is both train and test\n", k); }
/* if we have sufficient numbers of training and testing, remove
* redundancy from the test set, optimally (randomly select one
* representative from each cluster following SLC) */
if(ntrain >= cfg->min_ntrain && ntest >= cfg->min_ntest) {
if ((status = esl_msa_SequenceSubset(msa, i_am_test, &test_msa)) != eslOK) goto ERROR;
/* reset i_am_test[], we'll refill it with single seq from each cluster */
ESL_ALLOC(test_msa2msa, sizeof(int) * ntest);
esl_vec_ISet(test_msa2msa, ntest, FALSE);
ctr = 0;
for(k = 0; k < msa->nseq; k++) { if(i_am_test[k]) test_msa2msa[ctr++] = k; }
esl_vec_ISet(i_am_test, msa->nseq, FALSE);
ntest = 0;
/* Cluster the test sequences. */
if(nin != NULL) { free(nin); nin = NULL; }
if(assignment != NULL) { free(assignment); assignment = NULL; }
if ((status = esl_msacluster_SingleLinkage(test_msa, cfg->idthresh2, &assignment, &nin, &nc)) != eslOK) goto ERROR;
for (c = 0; c < nc; c++) {
nskip = esl_rnd_Roll(cfg->r, nin[c]); /* pick a random seq in this cluster to be the test. */
for (k=0; k < test_msa->nseq; k++)
if (assignment[k] == c) {
if (nskip == 0) {
i_am_test[test_msa2msa[k]] = TRUE;
ntest++;
break;
} else nskip--;
}
}
esl_msa_Destroy(test_msa);
free(test_msa2msa);
if(ntest >= cfg->min_ntest) {
/* printf("n: %5d ntrain: %5d ntest: %5d nbest_train: %5d nbest_test: %5d\n",
n, ntrain, ntest, nbest_train, nbest_test); */
/* We have sufficiently large train and test sets. Check if
* this i our best set of train and test clusters thus far
* found, if so, update best_test and best_train. Where the
* 'best' is defined as either:
* maximum of |train| + |test| (default)
* OR maximum of |test| (enabled with --maxtest)
*/
if(( do_maxtest && (ntest > nbest_test)) ||
(! do_maxtest && ((ntrain+ntest) > (nbest_train+nbest_test)))) {
esl_vec_ICopy(i_am_train, msa->nseq, i_am_best_train);
esl_vec_ICopy(i_am_test, msa->nseq, i_am_best_test);
nbest_train = ntrain;
nbest_test = ntest;
}
}
}
} /* end of for(n = 0; n < msa->nseq; n++) */
if(nbest_train == 0 || nbest_test == 0) {
esl_vec_ISet(i_am_best_train, msa->nseq, 0);
esl_vec_ISet(i_am_best_test, msa->nseq, 0);
}
else {
;/* printf("Success! train: %d seqs test: %d seqs\n", nbest_train, nbest_test); */
}
*ret_i_am_train = i_am_best_train;
*ret_i_am_test = i_am_best_test;
free(i_am_train);
free(i_am_test);
esl_dmatrix_Destroy(S);
return eslOK;
ERROR:
if (i_am_train != NULL) free(i_am_train);
if (i_am_test != NULL) free(i_am_test);
if (i_am_best_train != NULL) free(i_am_best_train);
if (i_am_best_test != NULL) free(i_am_best_test);
*ret_i_am_train = NULL;
*ret_i_am_test = NULL;
return status;
}
/* sythesize_negatives_and_embed_positives()
*
* 1. Randomly pick which negative sequence each positive sequence will
* be embedded in, and the location/orientation it will be embedded.
* 2. Generate each negative sequence from the input database with the
* desired shuffling procedure and use it to create a benchmark sequence.
* Each benchmark sequence includes a complete negative sequence as well
* as all the positives to be embedded within that negative, 'inserted'
* in the appropriate positions. These benchmark sequences will be
* searched during the benchmark.
*/
static int
synthesize_negatives_and_embed_positives(ESL_GETOPTS *go, struct cfg_s *cfg, ESL_SQ **posseqs, int npos)
{
int status;
ESL_SQ *negsq = NULL; /* a negative sequence */
ESL_SQ *bmksq = NULL; /* an output sequence, negative sequence with embedded positive sequence(s) */
int i; /* index of negative sequence */
int j; /* index of positive sequence to embed in negative sequence */
int64_t p; /* a position in a sequence */
int64_t neg_p; /* a position in a negative sequence */
int64_t bmk_p; /* a position in an output sequence */
int chunkL; /* length of a sequence chunk to extract from the db while constructing negatives */
int q; /* an index for one of the embedded seqs in a output sequence */
void *ptr; /* for reallocating */
int alloc_chunk = 2; /* number of elements to add when reallocating */
int keep_rolling; /* for continuing to randomly choose numbers */
ESL_DSQ *tmpdsq; /* temporary dsq, generated by the HMM */
/* per-positive sequence variables, all are [0..j..npos-1] */
int *posseqs_i = NULL; /* negative sequence idx (i) j is embedded within */
int *posseqs_p = NULL; /* sequence position idx (p) j occurs at within the negative sequence it is embedded within */
int *posseqs_o = NULL; /* orientation for sequence j within the negative sequence it is embedded within (0 or 1) */
/* per-negative sequence variables */
int *negseqs_n = NULL; /* [0..i..cfg->nneg-1] number of positive sequences to be embedded in negative sequence i */
int *negseqs_poslen = NULL; /* [0..i..cfg->nneg-1] summed length of positive sequences to be embedded in negative sequence i */
int **negseqs_p = NULL; /* [0..i..cfg->nneg-1][0..q..negseqs_n[i]] sequence position index (p) at which a sequence will be embedded */
int *cur_alloc = NULL; /* [0..i..cfg->nneg-1] current number of elements allocated for negseqs_p[i] */
ESL_ALLOC(posseqs_i, sizeof(int) * npos);
ESL_ALLOC(posseqs_p, sizeof(int) * npos);
ESL_ALLOC(posseqs_o, sizeof(int) * npos);
ESL_ALLOC(negseqs_n, sizeof(int) * cfg->nneg);
ESL_ALLOC(negseqs_poslen, sizeof(int) * cfg->nneg);
ESL_ALLOC(negseqs_p, sizeof(int *) * cfg->nneg);
ESL_ALLOC(cur_alloc, sizeof(int) * cfg->nneg);
/* Initialize */
esl_vec_ISet(negseqs_n, cfg->nneg, 0);
esl_vec_ISet(negseqs_poslen, cfg->nneg, 0);
for (i = 0; i < cfg->nneg; i++) {
ESL_ALLOC(negseqs_p[i], sizeof(int *) * alloc_chunk);
cur_alloc[i] = alloc_chunk;
}
/* Randomly pick test sequence/positions/orientations in which to embed each positive */
for (j = 0; j < npos; j++) {
/* pick a test sequence to embed within */
i = esl_rnd_Roll(cfg->r, cfg->nneg); /* i = 0..cfg->nneg-1 */
if(negseqs_n[i] == cur_alloc[i]) {
cur_alloc[i] += alloc_chunk;
ESL_RALLOC(negseqs_p[i], ptr, sizeof(int) * (cur_alloc[i]));
}
posseqs_i[j] = i;
/* Pick a position after which to embed the sequence.
* We require it to be unique: each positive test sequence must embed
* at a different position
*/
keep_rolling = TRUE;
while(keep_rolling) {
p = esl_rnd_Roll(cfg->r, cfg->negL) + 1; /* p = 1..cfg->negL (note the + 1) */
keep_rolling = FALSE;
for(q = 0; q < negseqs_n[i]; q++) {
if(negseqs_p[i][q] == p) { keep_rolling = TRUE; break; }
}
}
posseqs_p[j] = p;
negseqs_p[i][negseqs_n[i]] = p; /* we store this twice, b/c we'll sort negseqs_p[i] later */
/* pick an orientation in which to embed */
posseqs_o[j] = esl_rnd_Roll(cfg->r, 2); /* 0..1, Watson or Crick */
/* increment counters */
negseqs_n[i]++;
negseqs_poslen[i] += posseqs[j]->n;
}
/* At this point, for each negative sequence, we now know which
* positives we'll embed within it as well as where they'll be
* embedded. Next, we generate the negative sequence and a benchmark
* sequence for each negative. The benchmark sequence will consist of
* the entire negative sequence in order, but with the positives
* inserted at their corresponding positions and orientations. The
* length of the benchmark sequence will be cfg->negL+negseqs_poslen[i].
*/
bmksq = esl_sq_CreateDigital(cfg->abc);
negsq = esl_sq_CreateDigital(cfg->abc);
for (i = 0; i < cfg->nneg; i++) {
/* Allocate and initialize the benchmark sequence */
esl_sq_GrowTo(bmksq, cfg->negL+negseqs_poslen[i]);
bmksq->n = cfg->negL + negseqs_poslen[i];
bmksq->dsq[0] = bmksq->dsq[bmksq->n+1] = eslDSQ_SENTINEL;
esl_sq_FormatName(bmksq, "rmark%d", i+1);
esl_sq_FormatName(negsq, "rmark%d-nopositives", i+1);
/* Create the negative sequence of length cfg->negL by either
* generating sequence from the HMM or by using the input database
* (if -S). If using the HMM, generate and concatenate as many
* seqs as necessary until the total length is cfg->negL. If -S,
* select chunks of the input database of length cfg->negchunkL
* (user-definable with -C) and shuffle them with the specified
* method and appending. If --iid, we construct each chunk and
* append them, even though it's unnecessary - we could just do
* one chunk.
*/
esl_sq_GrowTo(negsq, cfg->negL);
negsq->dsq[0] = negsq->dsq[cfg->negL+1] = eslDSQ_SENTINEL;
negsq->n = 0;
while(negsq->n < cfg->negL) {
if(esl_opt_GetBoolean(go, "-S") || esl_opt_GetBoolean(go, "--iid")) { /* shuffle part of the seqdb */
chunkL = (negsq->n + cfg->negchunkL <= cfg->negL) ? cfg->negchunkL : cfg->negL - negsq->n;
if(cfg->negsummfp != NULL) {
/* print out sequence name, start/end posn in newly constructed negative seq, set_random_segment() will print the rest */
fprintf(cfg->negsummfp, "%-10s %10" PRId64 " %10" PRId64 " ", bmksq->name, negsq->n+1, negsq->n + chunkL);
}
set_random_segment(go, cfg, cfg->negsummfp, negsq->dsq + negsq->n + 1, chunkL);
negsq->n += chunkL;
}
else { /* -S not enabled, generate part of the sequence from the HMM */
esl_hmm_Emit(cfg->r, cfg->hmm, &tmpdsq, NULL, &chunkL);
if((negsq->n + chunkL) > cfg->negL) chunkL = cfg->negL - negsq->n;
memcpy(negsq->dsq + negsq->n + 1, tmpdsq+1, sizeof(ESL_DSQ) * chunkL);
free(tmpdsq);
/* printf("negsq %2d %10" PRId64 "\n", i, negsq->n); */
negsq->n += chunkL;
}
}
/* no need to name negsq, we won't output it */
/* Construct the benchmark sequence by copying chunks of the negative
* sequence and the positives to be embedded within it, in the
* proper order. First, sort the list of embed positions, so we
* can step through and embed easily
*/
esl_vec_ISortIncreasing(negseqs_p[i], negseqs_n[i]);
neg_p = 1; /* position in negative seq, 1..negsq->n, in the for loop below we've always accounted for 1..neg_p-1 */
bmk_p = 1; /* position in benchmark seq, 1..bmksq->n, in the for loop below we've always we've accounted for 1..bmk_p-1 */
for(q = 0; q < negseqs_n[i]; q++) { /* foreach positive to embed within neg seq i */
memcpy(bmksq->dsq+bmk_p, negsq->dsq+neg_p, sizeof(ESL_DSQ) * (negseqs_p[i][q] - neg_p + 1));
bmk_p += negseqs_p[i][q] - neg_p + 1;
neg_p = negseqs_p[i][q] + 1;
/* Search exhaustively for the posseq idx j that embeds at neg_p (there can only be one, see above)
* This is necessary b/c we sorted negseqs_p, but not posseqs_p */
for(j = 0; j < npos; j++) {
if((posseqs_i[j] == i) && (posseqs_p[j] == negseqs_p[i][q])) { break; }
}
if(j == npos) esl_fatal("Unable to find positive sequence that embeds after posn %" PRId64 " in negseq %d\n", neg_p, i);
/* found it, now embed by copying, after reverse complementing if nec */
if(posseqs_o[j] == 1) {
if((status = esl_sq_ReverseComplement(posseqs[j])) != eslOK) esl_fatal("Failed to reverse complement");
}
memcpy(bmksq->dsq+bmk_p, posseqs[j]->dsq+1, sizeof(ESL_DSQ) * posseqs[j]->n);
bmk_p += posseqs[j]->n;
/* output positive data to summary file */
fprintf(cfg->possummfp, "%-35s %-10s %-35s %8" PRId64 " %8" PRId64 "\n",
posseqs[j]->desc, /* description, this has been set earlier as the msa name plus seq idx (e.g. "tRNA/3" for 3rd tRNA in the set) */
bmksq->name, /* output sequence name (e.g. rmark10) */
posseqs[j]->name, /* positive sequence name (from input MSA) */
(posseqs_o[j] == 0) ? (bmk_p - posseqs[j]->n + 1) : bmk_p, /* start point in bmksq */
(posseqs_o[j] == 0) ? bmk_p : (bmk_p - posseqs[j]->n + 1)); /* end point in bmksq */
}
/* done embedding, finish off outseq with the chunk that occurs after the final embedded seq */
if(neg_p <= negsq->n) {
memcpy(bmksq->dsq+bmk_p, negsq->dsq+neg_p, sizeof(ESL_DSQ) * (negsq->n - neg_p + 1));
bmk_p += negsq->n - neg_p + 1;
neg_p = negsq->n + 1;
}
/* sanity checks */
if(neg_p != (negsq->n + 1)) esl_fatal("Error creating output sequence, full negative not properly included");
if(bmk_p != (bmksq->n + 1)) esl_fatal("Error creating output sequence, output length incorrect");
/* output the sequence */
esl_sqio_Write(cfg->out_bmkfp, bmksq, eslSQFILE_FASTA, FALSE);
esl_sq_Reuse(bmksq);
if(cfg->nseqfp != NULL) esl_sqio_Write(cfg->nseqfp, negsq, eslSQFILE_FASTA, FALSE);
esl_sq_Reuse(negsq);
}
esl_sq_Destroy(bmksq);
esl_sq_Destroy(negsq);
free(posseqs_i);
free(posseqs_p);
free(posseqs_o);
for(i = 0; i < cfg->nneg; i++) {
free(negseqs_p[i]);
}
free(negseqs_p);
free(negseqs_n);
free(negseqs_poslen);
free(cur_alloc);
return eslOK;
ERROR:
if(bmksq != NULL) esl_sq_Destroy(bmksq);
if(negsq != NULL) esl_sq_Destroy(negsq);
if(posseqs_i != NULL) free(posseqs_i);
if(posseqs_p != NULL) free(posseqs_p);
if(posseqs_o != NULL) free(posseqs_o);
if(negseqs_p != NULL) { for(i = 0; i < cfg->nneg; i++) free(negseqs_p[i]); free(negseqs_p); }
if(negseqs_n != NULL) free(negseqs_n);
if(negseqs_poslen != NULL) free(negseqs_poslen);
if(cur_alloc != NULL) free(cur_alloc);
return status;
}
/* Fetch in a random sequence of length <L> from the the pre-digitized
* concatenated sequence database, select a random subseq, shuffle it
* by the chosen algorithm; set dsq[1..L] to the resulting randomized
* segment.
*
* If <logfp> is non-NULL, append one or more "<sqname> <from> <to>"
* fields to current line, to record where the random segment was
* selected from. This is useful in cases where we want to track back
* the origin of a high-scoring segment, in case the randomization
* wasn't good enough to obscure the identity of a segment.
*
*/
static int
set_random_segment(ESL_GETOPTS *go, struct cfg_s *cfg, FILE *logfp, ESL_DSQ *dsq, int L)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
ESL_SQ *dbsq = esl_sq_CreateDigital(cfg->abc);
int minDPL = esl_opt_GetInteger(go, "--minDPL");
int db_dependent = (esl_opt_GetBoolean(go, "--iid") == TRUE ? FALSE : TRUE);
char *pkey = NULL;
int64_t start, end;
int64_t Lseq;
int status;
if (L==0) return eslOK;
if (L > cfg->negchunkL) esl_fatal("asking to fetch a segment longer than chunksize %d\n", L, cfg->negchunkL);
/* fetch a random subseq from the source database */
esl_sq_GrowTo(sq, L);
if (db_dependent)
{
do {
if (pkey != NULL) free(pkey);
esl_sq_Reuse(dbsq);
/* NOTE: we should be able to use esl_ssi_FindNumber() to pick
* a random sequence and read it's length from the SSI
* index. However, I had trouble getting that to work on the
* Rfamseq database and I couldn't track down the
* problem. Maybe the SSI doesn't properly store the sequence
* lengths for such a large file? I resorted to positioning
* the file to a random sequence, and reading that sequence to
* get its length. This is much slower, but it works.
*
* Code block that *should* work:
* if (esl_ssi_FindNumber(cfg->dbfp->data.ascii.ssi, esl_rnd_Roll(cfg->r, cfg->db_nseq), NULL, NULL, NULL, &Lseq, &pkey) != eslOK)
* esl_fatal("failed to look up a random seq");
*/
/* pick a random sequence and get its pkey */
if (esl_ssi_FindNumber(cfg->dbfp->data.ascii.ssi, esl_rnd_Roll(cfg->r, cfg->db_nseq), NULL, NULL, NULL, NULL, &pkey) != eslOK)
esl_fatal("failed to look up a random seq");
/* position the sequence file */
if(esl_sqfile_PositionByKey(cfg->dbfp, pkey) != eslOK)
esl_fatal("failed to reposition to a random seq");
/* read the random sequence to get its length */
if(esl_sqio_Read(cfg->dbfp, dbsq) != eslOK)
esl_fatal("failed to read random seq");
Lseq = dbsq->L;
} while (Lseq < L);
start = 1 + esl_rnd_Roll(cfg->r, Lseq-L);
end = start + L - 1;
/* Another issue with SSI: the following line should suffice to
* fetch the sequence, but it gave me problems, probably for the
* same reasons alluded to above (which I can't figure out), so
* instead of fetching it efficiently using SSI, we copy it from
* <dbsq> which we only read b/c we need to be able to copy it
* here. The following line *should* work (and remove the need for
* reading the full sequence into memory):
* if ((status = esl_sqio_FetchSubseq(cfg->dbfp, pkey, start, end, sq)) != eslOK) esl_fatal("failed to fetch subseq, status: %d", status);
*/
sq->dsq[0] = sq->dsq[L+1] = eslDSQ_SENTINEL;
memcpy(sq->dsq+1, dbsq->dsq+start, sizeof(ESL_DSQ) * L);
esl_sq_ConvertDegen2X(sq);
}
/* log sequence source info: <name> <start> <end> */
if (logfp != NULL && db_dependent)
fprintf(logfp, "%-35s %10" PRId64 " %10" PRId64 "\n", pkey, start, end);
/* Now apply the appropriate randomization algorithm, if none are turned on, use --di */
if((esl_opt_GetBoolean(go, "--di")) ||
((! esl_opt_GetBoolean(go, "--mono")) &&
(! esl_opt_GetBoolean(go, "--markov0")) &&
(! esl_opt_GetBoolean(go, "--markov1")) &&
(! esl_opt_GetBoolean(go, "--iid")))) {
if (L < minDPL) status = esl_rsq_XShuffle (cfg->r, sq->dsq, L, sq->dsq);
else status = esl_rsq_XShuffleDP(cfg->r, sq->dsq, L, cfg->abc->Kp, sq->dsq);
}
else if (esl_opt_GetBoolean(go, "--mono")) status = esl_rsq_XShuffle (cfg->r, sq->dsq, L, sq->dsq);
else if (esl_opt_GetBoolean(go, "--markov0")) status = esl_rsq_XMarkov0 (cfg->r, sq->dsq, L, cfg->abc->Kp, sq->dsq);
else if (esl_opt_GetBoolean(go, "--markov1")) status = esl_rsq_XMarkov1 (cfg->r, sq->dsq, L, cfg->abc->Kp, sq->dsq);
else if (esl_opt_GetBoolean(go, "--iid")) status = esl_rsq_xIID (cfg->r, cfg->fq, cfg->abc->K, L, sq->dsq);
else esl_fatal("no randomization option? this can't happen.");
if (status != eslOK) esl_fatal("esl's shuffling failed");
memcpy(dsq, sq->dsq+1, sizeof(ESL_DSQ) * L);
esl_sq_Destroy(sq);
esl_sq_Destroy(dbsq);
free(pkey);
return eslOK;
}
/* read_hmmfile
*
* Read the input HMM file.
* Lines beginning with # are comments and are ignored.
* Format of file:
* line 1: <alphabet-type> (1 token, must be integer between 1 and 5)
* line 2: <N> (1 token, number of states)
* line 3: <begin> (<N> tokens, the 'begin' probability distribution)
* lines 4 to <N>+3: <transitions> (<N> tokens, transition distribution for state L-3 if line L)
* lines <N>+4 to 2*<N>+3: <transitions> (<abc->K> tokens, emission distribution for state L-<N>+3 if line L,
* abc->K is size of alphabet (4 for RNA))
*
* All tokens in each probability distribution (lines 3->2*<N>+3) should sum to 1.0.
* Types of alphabet:
* type alphabet abc->K
* 1 RNA 4
* 2 DNA 4
* 3 AMINO 20
* 4 COINS 2
* 5 DICE 6
*
* We die with esl_fatal() if there's an error.
* Returns: VOID
*/
void
read_hmmfile(char *filename, ESL_HMM **ret_hmm)
{
int status;
ESL_FILEPARSER *efp;
ESL_HMM *hmm = NULL;
ESL_ALPHABET *abc;
char *tok;
int type;
int i,j;
int nstates;
if (esl_fileparser_Open(filename, NULL, &efp) != eslOK) esl_fatal("ERROR, failed to open template file %s in parse_template_file\n", filename);
esl_fileparser_SetCommentChar(efp, '#');
status = eslOK;
/* get alphabet type */
if((status = esl_fileparser_GetToken(efp, &tok, NULL)) != eslOK) esl_fatal("ERROR parsing HMM file, unable to read first token");
type = atoi(tok);
if(type < 1 || type > 5) { esl_fatal("ERROR parsing HMM file, first token should be alphabet type, an int between 1 and 5"); }
if(type != eslRNA) { esl_fatal("ERROR parsing HMM file, invalid alphabet type, it must be RNA (1)"); }
abc = esl_alphabet_Create(type);
/* get number of states */
if((status = esl_fileparser_GetToken(efp, &tok, NULL)) != eslOK) esl_fatal("ERROR parsing HMM file, unable to read first token");
nstates = atoi(tok);
if((status = esl_fileparser_NextLine(efp)) != eslOK) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");
/* create HMM */
hmm = esl_hmm_Create(abc, nstates);
/* read begin probs */
j = 0;
while((status = esl_fileparser_GetTokenOnLine(efp, &tok, NULL)) == eslOK) {
hmm->pi[j++] = atof(tok);
}
if(j != hmm->M) { esl_fatal("ERROR parsing HMM file, wrong number of begin transitions, %d != %d", j, hmm->M); }
if(esl_FCompare_old(esl_vec_FSum(hmm->pi, hmm->M), 1., eslSMALLX1) != eslOK) { esl_fatal("ERROR parsing HMM file, begin probs don't sum to 1."); }
esl_vec_FNorm(hmm->pi, hmm->M);
if((status = esl_fileparser_NextLine(efp)) != eslOK) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");
/* read transition probs, should be hmm->M+1 of these for each state, the +1 is for the end prob */
for(i = 0; i < hmm->M; i++) {
j = 0;
while((status = esl_fileparser_GetTokenOnLine(efp, &tok, NULL)) == eslOK) {
hmm->t[i][j++] = atof(tok);
}
if(j != (hmm->M+1)) { esl_fatal("ERROR parsing HMM file, wrong number of transitions for state %d", i); }
if(esl_FCompare_old(esl_vec_FSum(hmm->t[i], (hmm->M+1)), 1., 0.00001) != eslOK) { esl_fatal("ERROR parsing HMM file, trans probs state %d don't sum to 1.", i); }
esl_vec_FNorm(hmm->t[i], (hmm->M+1));
if((status = esl_fileparser_NextLine(efp)) != eslOK) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");
}
/* read emission probs, should be abc->K of these per state */
for(i = 0; i < hmm->M; i++) {
j = 0;
while((status = esl_fileparser_GetTokenOnLine(efp, &tok, NULL)) == eslOK) {
hmm->e[i][j++] = atof(tok);
}
if(j != (hmm->K)) { esl_fatal("ERROR parsing HMM file, wrong number of emissions for state %d", i); }
if(esl_FCompare_old(esl_vec_FSum(hmm->e[i], hmm->K), 1., 0.00001) != eslOK) { esl_fatal("ERROR parsing HMM file, emit probs state %d don't sum to 1.", i); }
esl_vec_FNorm(hmm->e[i], hmm->K);
status = esl_fileparser_NextLine(efp);
if((i < (hmm->M-1)) && (status != eslOK)) esl_fatal("ERROR parsing HMM file, ran out of lines too early.");
}
*ret_hmm = hmm;
esl_fileparser_Destroy(efp);
return;
}
|