1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
# -*- coding: utf-8 -*-
"""
DataFrame client for InfluxDB
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import math
import pandas as pd
from .client import InfluxDBClient
def _pandas_time_unit(time_precision):
unit = time_precision
if time_precision == 'm':
unit = 'ms'
elif time_precision == 'u':
unit = 'us'
elif time_precision == 'n':
unit = 'ns'
assert unit in ('s', 'ms', 'us', 'ns')
return unit
class DataFrameClient(InfluxDBClient):
"""
The ``DataFrameClient`` object holds information necessary to connect
to InfluxDB. Requests can be made to InfluxDB directly through the client.
The client reads and writes from pandas DataFrames.
"""
EPOCH = pd.Timestamp('1970-01-01 00:00:00.000+00:00')
def write_points(self, dataframe, measurement, tags=None,
time_precision=None, database=None, retention_policy=None,
batch_size=None):
"""
Write to multiple time series names.
:param dataframe: data points in a DataFrame
:param measurement: name of measurement
:param tags: dictionary of tags, with string key-values
:param time_precision: [Optional, default None] Either 's', 'ms', 'u'
or 'n'.
:param batch_size: [Optional] Value to write the points in batches
instead of all at one time. Useful for when doing data dumps from
one database to another or when doing a massive write operation
:type batch_size: int
"""
if batch_size:
number_batches = int(math.ceil(
len(dataframe) / float(batch_size)))
for batch in range(number_batches):
start_index = batch * batch_size
end_index = (batch + 1) * batch_size
points = self._convert_dataframe_to_json(
dataframe.ix[start_index:end_index].copy(),
measurement, tags, time_precision
)
super(DataFrameClient, self).write_points(
points, time_precision, database, retention_policy)
return True
else:
points = self._convert_dataframe_to_json(
dataframe, measurement, tags, time_precision
)
super(DataFrameClient, self).write_points(
points, time_precision, database, retention_policy)
return True
def query(self, query, chunked=False, database=None):
"""
Quering data into a DataFrame.
:param chunked: [Optional, default=False] True if the data shall be
retrieved in chunks, False otherwise.
"""
results = super(DataFrameClient, self).query(query, database=database)
if query.upper().startswith("SELECT"):
if len(results) > 0:
return self._to_dataframe(results)
else:
return {}
else:
return results
def _to_dataframe(self, rs):
result = {}
if isinstance(rs, list):
return map(self._to_dataframe, rs)
for key, data in rs.items():
name, tags = key
if tags is None:
key = name
else:
key = (name, tuple(sorted(tags.items())))
df = pd.DataFrame(data)
df.time = pd.to_datetime(df.time)
df.set_index('time', inplace=True)
df.index = df.index.tz_localize('UTC')
df.index.name = None
result[key] = df
return result
def _convert_dataframe_to_json(self, dataframe, measurement, tags=None,
time_precision=None):
if not isinstance(dataframe, pd.DataFrame):
raise TypeError('Must be DataFrame, but type was: {0}.'
.format(type(dataframe)))
if not (isinstance(dataframe.index, pd.tseries.period.PeriodIndex) or
isinstance(dataframe.index, pd.tseries.index.DatetimeIndex)):
raise TypeError('Must be DataFrame with DatetimeIndex or \
PeriodIndex.')
dataframe.index = dataframe.index.to_datetime()
if dataframe.index.tzinfo is None:
dataframe.index = dataframe.index.tz_localize('UTC')
# Convert column to strings
dataframe.columns = dataframe.columns.astype('str')
# Convert dtype for json serialization
dataframe = dataframe.astype('object')
precision_factor = {
"n": 1,
"u": 1e3,
"ms": 1e6,
"s": 1e9,
"m": 1e9 * 60,
"h": 1e9 * 3600,
}.get(time_precision, 1)
points = [
{'measurement': measurement,
'tags': tags if tags else {},
'fields': rec,
'time': int(ts.value / precision_factor)
}
for ts, rec in zip(dataframe.index, dataframe.to_dict('record'))]
return points
def _datetime_to_epoch(self, datetime, time_precision='s'):
seconds = (datetime - self.EPOCH).total_seconds()
if time_precision == 'h':
return seconds / 3600
elif time_precision == 'm':
return seconds / 60
elif time_precision == 's':
return seconds
elif time_precision == 'ms':
return seconds * 1e3
elif time_precision == 'u':
return seconds * 1e6
elif time_precision == 'n':
return seconds * 1e9
|