1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/*
Measure the entropy level dynamically from the Infinite Noise Multiplier.
The theory behind this is simple. The next bit from the INM TRNG can be guessed, based on
the previous bits, by measuring how often a 0 or 1 occurs given the previous bits. Update
these statistics dynamically, and use them to determine how hard it would be to predict
the current state.
For example, if 0100 is followed by 1 80% of the time, and we read a 1, the probability of
the input string being what it is decreases by multiplying it by 0.8. If we read a 0, we
multiply the likelyhood of the current state by 0.2.
Because INMs generate about log(K)/log(2) bits per clock when K is the gain used in the
INM (between 1 and 2), we know how much entropy there should be coming from the device.
If the measured entropy diverges too strongly from the theoretical entropy, we should shut
down the entropy source, since it is not working correctly.
An assumption made is that bits far enough away are not correlated. This is directly
confirmed.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "libinfnoise_private.h"
#define INM_MIN_DATA 80000u
#define INM_MIN_SAMPLE_SIZE 100u
#define INM_MAX_SEQUENCE 20u
#define INM_MAX_COUNT (1u << 14u)
double inmK, inmExpectedEntropyPerBit;
static uint8_t inmN;
static uint32_t inmPrevBits;
static uint32_t inmNumBitsSampled;
static uint32_t *inmOnesEven, *inmZerosEven;
static uint32_t *inmOnesOdd, *inmZerosOdd;
// The total probability of generating the string of states we did is
// 1/(2^inmNumBitsOfEntropy * inmCurrentProbability).
static uint32_t inmNumBitsOfEntropy;
static double inmCurrentProbability;
static uint64_t inmTotalBits;
static bool inmPrevBit;
static uint32_t inmEntropyLevel;
static uint32_t inmNumSequentialZeros, inmNumSequentialOnes;
static uint32_t inmTotalOnes, inmTotalZeros;
static uint32_t inmEvenMisfires, inmOddMisfires;
static bool inmPrevEven, inmPrevOdd;
static bool inmDebug;
// Print the tables of statistics.
void inmDumpStats(void) {
uint32_t i;
for(i = 0u; i < 1u << inmN; i++) {
printf("%x onesEven:%u zerosEven:%u onesOdd:%u zerosOdd:%u\n",
i, inmOnesEven[i], inmZerosEven[i], inmOnesOdd[i], inmZerosOdd[i]);
}
}
// Free memory used by the health check.
void inmHealthCheckStop(void) {
if(inmOnesEven != NULL) {
free(inmOnesEven);
}
if(inmZerosEven != NULL) {
free(inmZerosEven);
}
if(inmOnesOdd != NULL) {
free(inmOnesOdd);
}
if(inmZerosOdd != NULL) {
free(inmZerosOdd);
}
}
// Reset the statistics.
static void resetStats(void) {
inmNumBitsSampled = 0u;
inmCurrentProbability = 1.0;
inmNumBitsOfEntropy = 0u;
inmEntropyLevel = 0u;
inmTotalOnes = 0u;
inmTotalZeros = 0u;
inmEvenMisfires = 0u;
inmOddMisfires = 0u;
}
// Initialize the health check. N is the number of bits used to predict the next bit.
// At least 8 bits must be used, and no more than 30. In general, we should use bits
// large enough so that INM output will be uncorrelated with bits N samples back in time.
bool inmHealthCheckStart(uint8_t N, double K, bool debug) {
if(N < 1u || N > 30u) {
return false;
}
inmDebug = debug;
inmNumBitsOfEntropy = 0u;
inmCurrentProbability = 1.0;
inmK = K;
inmN = N;
inmPrevBits = 0u;
inmOnesEven = calloc((size_t)1u << N, sizeof(*inmOnesEven));
inmZerosEven = calloc((size_t)1u << N, sizeof(*inmZerosEven));
inmOnesOdd = calloc((size_t)1u << N, sizeof(*inmOnesOdd));
inmZerosOdd = calloc((size_t)1u << N, sizeof(*inmZerosOdd));
inmExpectedEntropyPerBit = log(K)/log(2.0);
inmTotalBits = 0u;
inmPrevBit = false;
inmNumSequentialZeros = 0u;
inmNumSequentialOnes = 0u;
resetStats();
if(inmOnesEven == NULL || inmZerosEven == NULL || inmOnesOdd == NULL || inmZerosOdd == NULL) {
inmHealthCheckStop();
return false;
}
return true;
}
// If running continuously, it is possible to start overflowing the 32-bit counters for
// zeros and ones. Check for this, and scale the stats if needed.
static void scaleStats(void) {
uint32_t i;
for(i = 0u; i < (1u << inmN); i++) {
inmZerosEven[i] >>= 1u;
inmOnesEven[i] >>= 1u;
inmZerosOdd[i] >>= 1u;
inmOnesOdd[i] >>= 1u;
}
}
// If running continuously, it is possible to start overflowing the 32-bit counters for
// zeros and ones. Check for this, and scale the stats if needed.
static void scaleEntropy(void) {
if(inmNumBitsSampled == INM_MIN_DATA) {
inmNumBitsOfEntropy >>= 1u;
inmNumBitsSampled >>= 1u;
inmEvenMisfires >>= 1u;
inmOddMisfires >>= 1u;
}
}
// If running continuously, it is possible to start overflowing the 32-bit counters for
// zeros and ones. Check for this, and scale the stats if needed.
static void scaleZeroOneCounts(void) {
uint64_t maxVal = inmTotalZeros >= inmTotalOnes? inmTotalZeros : inmTotalOnes;
if(maxVal == INM_MIN_DATA) {
inmTotalZeros >>= 1u;
inmTotalOnes >>= 1u;
}
}
// This should be called for each bit generated.
bool inmHealthCheckAddBit(bool evenBit, bool oddBit, bool even) {
bool bit;
if(even) {
bit = evenBit;
inmEvenMisfires += (evenBit != inmPrevEven);
} else {
bit = oddBit;
inmOddMisfires += (oddBit != inmPrevOdd);
}
inmPrevEven = evenBit;
inmPrevOdd = oddBit;
inmTotalBits++;
if(inmDebug && (inmTotalBits & 0xfffffllu) == 0u) {
fprintf(stderr, "Generated %llu bits. %s to use data. Estimated entropy per bit: %f, estimated K: %f\n",
(long long)inmTotalBits, inmHealthCheckOkToUseData()? "OK" : "NOT OK", inmHealthCheckEstimateEntropyPerBit(),
inmHealthCheckEstimateK());
fprintf(stderr, "num1s:%f%%, even misfires:%f%%, odd misfires:%f%%\n",
inmTotalOnes*100.0/(inmTotalZeros + inmTotalOnes),
inmEvenMisfires*100.0/inmNumBitsSampled, inmOddMisfires*100.0/inmNumBitsSampled);
fflush(stderr);
}
inmPrevBits = (inmPrevBits << 1) & ((1 << inmN)-1);
if(inmPrevBit) {
inmPrevBits |= 1;
}
inmPrevBit = bit;
if(inmNumBitsSampled > 100u) {
if(bit) {
inmTotalOnes++;
inmNumSequentialOnes++;
inmNumSequentialZeros = 0u;
if(inmNumSequentialOnes > INM_MAX_SEQUENCE) {
fprintf(stderr, "Maximum sequence of %d 1's exceeded\n", INM_MAX_SEQUENCE);
exit(1);
}
} else {
inmTotalZeros++;
inmNumSequentialZeros++;
inmNumSequentialOnes = 0u;
if(inmNumSequentialZeros > INM_MAX_SEQUENCE) {
fprintf(stderr, "Maximum sequence of %d 0's exceeded\n", INM_MAX_SEQUENCE);
exit(1);
}
}
}
uint32_t zeros, ones;
if(even) {
zeros = inmZerosEven[inmPrevBits];
ones = inmOnesEven[inmPrevBits];
} else {
zeros = inmZerosOdd[inmPrevBits];
ones = inmOnesOdd[inmPrevBits];
}
uint32_t total = zeros + ones;
if(bit) {
if(ones != 0u) {
inmCurrentProbability *= (double)ones/total;
}
} else {
if(zeros != 0u) {
inmCurrentProbability *= (double)zeros/total;
}
}
while(inmCurrentProbability <= 0.5) {
inmCurrentProbability *= 2.0;
inmNumBitsOfEntropy++;
if(inmHealthCheckOkToUseData()) {
inmEntropyLevel++;
}
}
//printf("probability:%f\n", inmCurrentProbability);
inmNumBitsSampled++;
if(bit) {
if(even) {
inmOnesEven[inmPrevBits]++;
if(inmOnesEven[inmPrevBits] == INM_MAX_COUNT) {
scaleStats();
}
} else {
inmOnesOdd[inmPrevBits]++;
if(inmOnesOdd[inmPrevBits] == INM_MAX_COUNT) {
scaleStats();
}
}
} else {
if(even) {
inmZerosEven[inmPrevBits]++;
if(inmZerosEven[inmPrevBits] == INM_MAX_COUNT) {
scaleStats();
}
} else {
inmZerosOdd[inmPrevBits]++;
if(inmZerosOdd[inmPrevBits] == INM_MAX_COUNT) {
scaleStats();
}
}
}
scaleEntropy();
scaleZeroOneCounts();
return true;
}
// Once we have enough samples, we know that entropyPerBit = log(K)/log(2), so
// K must be 2^entryopPerBit.
double inmHealthCheckEstimateK(void) {
double entropyPerBit = (double)inmNumBitsOfEntropy/inmNumBitsSampled;
return pow(2.0, entropyPerBit);
}
// Once we have enough samples, we know that entropyPerBit = log(K)/log(2), so
// K must be 2^entryopPerBit.
double inmHealthCheckEstimateEntropyPerBit(void) {
return (double)inmNumBitsOfEntropy/inmNumBitsSampled;
}
// Return true if the health checker has enough data to verify proper operation of the INM.
bool inmHealthCheckOkToUseData(void) {
double entropy = inmHealthCheckEstimateEntropyPerBit();
return inmTotalBits >= INM_MIN_DATA && entropy*INM_ACCURACY >= inmExpectedEntropyPerBit &&
entropy/INM_ACCURACY <= inmExpectedEntropyPerBit;
}
// Just return the entropy level added so far in bytes;
uint32_t inmGetEntropyLevel(void) {
return inmEntropyLevel;
}
// Reduce the entropy level by numBytes.
void inmClearEntropyLevel(void) {
inmEntropyLevel = 0u;
}
// Check that the entropy of the last group of bits was high enough for use.
bool inmEntropyOnTarget(uint32_t entropy, uint32_t numBits) {
uint32_t expectedEntropy = (uint32_t)(numBits*inmExpectedEntropyPerBit);
return expectedEntropy < entropy*INM_ACCURACY;
}
#ifdef TEST_HEALTHCHECK
#include "infnoise.h"
// Compare the ability to predict with 1 fewer bits and see how much less accurate we are.
static void checkLSBStatsForNBits(uint8_t N) {
uint32_t i, j;
uint32_t totalGuesses = 0u;
uint32_t totalRight = 0.0;
for(i = 0u; i < (1u << N); i++) {
uint32_t zeros = 0u;
uint32_t ones = 0u;
for(j = 0u; j < (1u << (inmN - N)); j++) {
uint32_t pos = i + j*(1u << N);
zeros += inmZerosEven[pos];
ones += inmOnesEven[pos];
}
if(zeros >= ones) {
totalRight += zeros;
} else {
totalRight += ones;
}
totalGuesses += zeros + ones;
}
printf("Probability of guessing correctly with %u bits: %f\n", N, (double)totalRight/totalGuesses);
}
// Compare the ability to predict with 1 fewer bits and see how much less accurate we are.
static void checkLSBStats(void) {
uint32_t N;
for(N = 1u; N <= inmN; N++) {
checkLSBStatsForNBits(N);
}
}
/* This could be built with one opamp for the multiplier, a comparator with
rail-to-rail outputs, and switches and caps and resistors.*/
static inline bool updateA(double *A, double K, double noise) {
if(*A > 1.0) {
*A = 1.0;
} else if (*A < 0.0) {
*A = 0.0;
}
*A += noise;
if(*A > 0.5) {
*A = K**A - (K-1);
return true;
}
*A += noise;
*A = K**A;
return false;
}
static inline bool computeRandBit(double *A, double K, double noiseAmplitude) {
double noise = noiseAmplitude*(((double)rand()/RAND_MAX) - 0.5);
return updateA(A, K, noise);
}
static void initOpts(struct opt_struct *opts) {
opts->outputMultiplier = 0u;
opts->daemon =
opts->debug =
opts->devRandom =
opts->noOutput =
opts->listDevices =
opts->raw = false;
opts->version = false;
opts->help = false;
opts->none = false;
opts->pidFileName =
opts->serial = NULL;
}
int main() {
struct opt_struct opts;
initOpts(&opts);
//double K = sqrt(2.0);
double K = 1.82;
uint8_t N = 16u;
inmHealthCheckStart(N, K, false);
srand(time(NULL));
double A = (double)rand()/RAND_MAX; // Simulating INM
double noiseAmplitude = 1.0/(1u << 10);
uint32_t i;
for(i = 0u; i < 32u; i++) {
// Throw away some initial bits.
computeRandBit(&A, K, noiseAmplitude);
}
bool evenBit = false;
bool oddBit = false;
for(i = 0u; i < 1u << 28u; i++) {
bool bit = computeRandBit(&A, K, noiseAmplitude);
bool even = !(i & 1);
if(even) {
evenBit = bit;
} else {
oddBit = bit;
}
if(!inmHealthCheckAddBit(evenBit, oddBit, even)) {
fprintf(stderr, "Failed health check!\n");
return 1;
}
if(inmTotalBits > 0u && (inmTotalBits & 0xfffffff) == 0) {
printf("Estimated entropy per bit: %f, estimated K: %f\n", inmHealthCheckEstimateEntropyPerBit(),
inmHealthCheckEstimateK());
checkLSBStats();
}
}
inmDumpStats();
inmHealthCheckStop();
return 0;
}
#endif
|