File: libinfnoise.c

package info (click to toggle)
infnoise 0.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 27,304 kB
  • sloc: ansic: 2,177; sh: 251; python: 146; makefile: 65
file content (405 lines) | stat: -rw-r--r-- 13,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/* Library for the Infinite Noise Multiplier USB stick */

// Required to include clock_gettime
#define _POSIX_C_SOURCE 200809L

#define INFNOISE_VENDOR_ID 0x0403
#define INFNOISE_PRODUCT_ID 0x6015

#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sys/types.h>
#include <ftdi.h>
#include "libinfnoise_private.h"
#include "KeccakF-1600-interface.h"

#if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || defined(__FreeBSD__)
#include <fcntl.h>
#endif

uint8_t keccakState[KeccakPermutationSizeInBytes];
uint8_t outBuf[BUFLEN];

void prepareOutputBuffer() {
    uint32_t i;

    // Endless loop: set SW1EN and SW2EN alternately
    for (i = 0u; i < BUFLEN; i+=2) {
        // Alternate Ph1 and Ph2
        outBuf[i] = (1 << SWEN1);
        outBuf[i+1] = (1 << SWEN2);
    }
}

bool initInfnoise(struct infnoise_context *context, char *serial, bool keccak, bool debug) {
    context->message="";
    context->entropyThisTime=0;
    context->errorFlag=false;
    context->keccakBytesGiven=0;

    prepareOutputBuffer();

    // initialize health check
    if (!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
        context->message = "Can't initialize health checker";
        return false;
    }

    // initialize USB
    if (!initializeUSB(&context->ftdic, &context->message, serial)) {
        // Sometimes have to do it twice - not sure why
        if (!initializeUSB(&context->ftdic, &context->message, serial)) {
            return false;
        }
    }

    // initialize keccak
    if (keccak) {
        KeccakInitialize();
        KeccakInitializeState(keccakState);
    }

    // let healthcheck collect some data
    uint32_t maxWarmupRounds = 5000;
    uint32_t warmupRounds = 0;

    //bool errorFlag = false;
    while (!inmHealthCheckOkToUseData()) {
        readData(context, NULL, true, 1);
        warmupRounds++;
    }

    if (warmupRounds > maxWarmupRounds) {
        context->message = "Unable to collect enough entropy to initialize health checker.";
        return false;
    }
    return true;
}

void deinitInfnoise(struct infnoise_context *context)
{
    inmHealthCheckStop();
    ftdi_usb_close(&context->ftdic);
    ftdi_deinit(&context->ftdic);
}


// Extract the INM output from the data received.  Basically, either COMP1 or COMP2
// changes, not both, so alternate reading bits from them.  We get 1 INM bit of output
// per byte read.  Feed bits from the INM to the health checker.  Return the expected
// bits of entropy.
uint32_t extractBytes(uint8_t *bytes, uint32_t length, uint8_t *inBuf, const char **message, bool *errorFlag) {
    inmClearEntropyLevel();
    uint32_t i;
    for (i = 0u; i < length; i++) {
        uint32_t j;
        uint8_t byte = 0u;
        for (j = 0u; j < 8u; j++) {
            uint8_t val = inBuf[i * 8u + j];
            uint8_t evenBit = (val >> COMP2) & 1u;
            uint8_t oddBit = (val >> COMP1) & 1u;
            bool even = j & 1u; // Use the even bit if j is odd
            uint8_t bit = even ? evenBit : oddBit;
            byte = (byte << 1u) | bit;

            // This is a good place to feed the bit from the INM to the health checker.
            if (!inmHealthCheckAddBit(evenBit, oddBit, even)) {
                *message = "Health check of Infinite Noise Multiplier failed!";
                *errorFlag = true;
                return 0;
            }
        }
        bytes[i] = byte;
    }
    return inmGetEntropyLevel();
}


// Return the difference in the times as a double in microseconds.
double diffTime(struct timespec *start, struct timespec *end) {
    uint32_t seconds = end->tv_sec - start->tv_sec;
    int32_t nanoseconds = end->tv_nsec - start->tv_nsec;
    return seconds * 1.0e6 + nanoseconds / 1000.0;
}

bool isSuperUser(void) {
    return (geteuid() == 0);
}


// let's do it recursive, because if sth. fails we can easily wipe the malloc()
infnoise_devlist_node_t* inf_get_devstrings(struct ftdi_context* ftdic,
                                            struct ftdi_device_list* curdev,
                                            const char** message,
                                            infnoise_devlist_node_t* bgn,
                                            infnoise_devlist_node_t* end) {
    if( curdev != NULL ) {
        infnoise_devlist_node_t* cur;
        cur = (infnoise_devlist_node_t*) malloc (sizeof(infnoise_devlist_node_t));
        cur->next = NULL;
        int rc = ftdi_usb_get_strings(ftdic, curdev->dev,
                                      cur->manufacturer, sizeof(cur->manufacturer),
                                      cur->description, sizeof(cur->description),
                                      cur->serial, sizeof(cur->serial));
        if (rc < 0) {
            *message = ftdi_get_error_string(ftdic);
            free( cur );
            return NULL;
        }
        else {
            // in case bgn is NULL, then implicitly end is NULL, also the other way around
            if(bgn == NULL) {
                bgn = cur;
            }
            else {
                end->next = cur;
            }
            infnoise_devlist_node_t* ret;
            ret = inf_get_devstrings(ftdic, curdev->next, message, bgn, cur);
            // a next dev triggered issue? -> wipe current
            if( ret == NULL ) {
                free( cur );
            }
            return ret;
        }
    }
    return bgn;
}


// Return a list of all infinite noise multipliers found.
infnoise_devlist_node_t* listUSBDevices(const char **message) {
    struct ftdi_context ftdic;
    if(ftdi_init(&ftdic) < 0) {
        *message = "Failed to init";
        return NULL;
    }

    infnoise_devlist_node_t* retlist = NULL;
    struct ftdi_device_list *devlist = NULL;
    if (ftdi_usb_find_all(&ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0
        || devlist == NULL) {
        if (!isSuperUser()) {
            *message = "Can't find Infinite Noise Multiplier.  Try running as super user?";
        } else {
            *message = "Can't find Infinite Noise Multiplier.";
        }
    }
    else {
        retlist = inf_get_devstrings(&ftdic, devlist, message, NULL, NULL);
        ftdi_list_free2(devlist);
    }

    ftdi_deinit(&ftdic);
    return retlist;
}

// Initialize the Infinite Noise Multiplier USB interface.
bool initializeUSB(struct ftdi_context *ftdic, const char **message, char *serial) {
    ftdi_init(ftdic);
    struct ftdi_device_list *devlist;

    // search devices
    int rc = ftdi_usb_find_all(ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID);
    if (rc < 0) {
        *message = "Can't find Infinite Noise Multiplier";
        return false;
    }
    ftdi_list_free2(devlist);

    // only one found, or no serial given
    if (serial == NULL) {
        // more than one found AND no serial given
        if (rc >= 2) {
            *message = "Multiple Infnoise TRNGs found and serial not specified, using the first one!";
        }
        if (ftdi_usb_open(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0) {
            if (!isSuperUser()) {
                *message = "Can't open Infinite Noise Multiplier. Try running as super user?";
            } else {
#ifdef LINUX
                *message = "Can't open Infinite Noise Multiplier.";
#endif
#if defined(__APPLE__)

                *message = "Can't open Infinite Noise Multiplier. sudo kextunload -b com.FTDI.driver.FTDIUSBSerialDriver ? sudo kextunload -b  com.apple.driver.AppleUSBFTDI ?";
#endif
            }
            return false;
        }
    } else {
        // serial specified
        if (ftdi_usb_open_desc(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID, NULL, serial) < 0) {
            if (!isSuperUser()) {
                *message = "Can't find Infinite Noise Multiplier. Try running as super user?";
            } else {
                *message = "Can't find Infinite Noise Multiplier with given serial";
            }
            return false;
        }
    }

    // Set high baud rate
    switch (ftdi_set_baudrate(ftdic, 30000)) {
    case -1:
        *message = "Invalid baud rate";
        return false;
    case -2:
        *message = "Setting baud rate failed";
        return false;
    case -3:
        *message = "Infinite Noise Multiplier unavailable";
        return false;
    default:
        break;
    }

    switch (ftdi_set_bitmode(ftdic, MASK, BITMODE_SYNCBB)) {
    case -1:
        *message = "Can't enable bit-bang mode";
        return false;
    case -2:
        *message = "Infinite Noise Multiplier unavailable\n";
        return false;
    default:
        break;
    }

    // Just test to see that we can write and read.
    uint8_t buf[64u] = {0u,};
    if (ftdi_write_data(ftdic, buf, sizeof(buf)) != sizeof(buf)) {
        *message = "USB write failed";
        return false;
    }
    if (ftdi_read_data(ftdic, buf, sizeof(buf)) != sizeof(buf)) {
        *message = "USB read failed";
        return false;
    }
    return true;
}


// Whiten the output, if requested, with a Keccak sponge. Output bytes only if the health
// checker says it's OK.  Using outputMultiplier > 1 is a nice way to generate a lot more
// cryptographically secure pseudo-random data than the INM generates.  If
// outputMultiplier is 0, we output only as many bits as we measure in entropy.
// This allows a user to generate hundreds of MiB per second if needed, for use
// as cryptographic keys.
uint32_t processBytes(uint8_t *bytes, uint8_t *result, uint32_t *entropy,
                      uint32_t *bytesGiven,
                      bool raw, uint32_t outputMultiplier) {
    //Use the lower of the measured entropy and the provable lower bound on
    //average entropy.
    if (*entropy > inmExpectedEntropyPerBit * BUFLEN / INM_ACCURACY) {
        *entropy = inmExpectedEntropyPerBit * BUFLEN / INM_ACCURACY;
    }
    if (raw) {
        // In raw mode, we just output raw data from the INM.
        if (result != NULL) {
            memcpy(result, bytes, BUFLEN / 8u * sizeof(uint8_t));
        }
        return BUFLEN / 8u;
    }

    // Note that BUFLEN has to be less than 1600 by enough to make the sponge secure,
    // since outputting all 1600 bits would tell an attacker the Keccak state, allowing
    // him to predict any further output, when outputMultiplier > 1, until the next call
    // to processBytes.  All 512 bits are absorbed before squeezing data out to ensure that
    // we instantly recover (reseed) from a state compromise, which is when an attacker
    // gets a snapshot of the keccak state.  BUFLEN must be a multiple of 64, since
    // Keccak-1600 uses 64-bit "lanes".
    uint8_t resultSize;
    if (outputMultiplier <= 2) {
        resultSize = 64u;
    } else {
        resultSize = 128u;
    }

    uint8_t dataOut[resultSize];
    KeccakAbsorb(keccakState, bytes, BUFLEN / 64u);

    if (outputMultiplier == 0u) {
        // Output all the bytes of entropy we have
        KeccakExtract(keccakState, dataOut, (*entropy + 63u) / 64u);
        if (result != NULL) {
            memcpy(result, dataOut, *entropy / 8u * sizeof(uint8_t));
        }
        return *entropy / 8u;
    }

    // Output 256*outputMultipler bits (in chunks of 1024)
    // only the first 1024 now,
    if (*bytesGiven == 0u) {
        *bytesGiven = outputMultiplier*256u / 8u;

        // Output up to 1024 bits at a time.
        uint32_t bytesToWrite = 1024u / 8u;
        if (bytesToWrite > *bytesGiven) {
            bytesToWrite = *bytesGiven;
        }

        KeccakExtract(keccakState, result, bytesToWrite / 8u);
        KeccakPermutation(keccakState);
        *bytesGiven -= bytesToWrite;
        return bytesToWrite;
    }
    return 0;
}

uint32_t readData(struct infnoise_context *context, uint8_t *result, bool raw, uint32_t outputMultiplier) {
    // check if data can be squeezed from the keccak sponge from previous state (or we need to collect some new entropy to get bytesGiven >0)
    if (context->keccakBytesGiven == 0u) { // collect new entropy (e.g. case RAW)
        uint8_t inBuf[BUFLEN];
        struct timespec start, end;
        clock_gettime(CLOCK_REALTIME, &start);

        // write clock signal
        if (ftdi_write_data(&context->ftdic, outBuf, sizeof(outBuf)) != sizeof(outBuf)) {
            context->message = "USB write failed";
            context->errorFlag = true;
        }

        // and read 512 byte from the internal buffer (in synchronous bitbang mode)
        if (ftdi_read_data(&context->ftdic, inBuf, sizeof(inBuf)) != sizeof(inBuf)) {
            context->message = "USB read failed";
            context->errorFlag = true;
            return 0;
        }

        clock_gettime(CLOCK_REALTIME, &end);
        if (diffTime(&start, &end) > MAX_MICROSEC_FOR_SAMPLES)
            return 0;

        uint8_t bytes[BUFLEN / 8u];
        context->entropyThisTime = extractBytes(bytes, sizeof(bytes), inBuf, &context->message, &context->errorFlag);
        if (context->errorFlag
            || ! (inmHealthCheckOkToUseData() 
                  && inmEntropyOnTarget(context->entropyThisTime, BUFLEN)) ) {
            // todo: message?
            return 0;
        }

        // called health check are ok and return bytes
        return processBytes(bytes, result, &context->entropyThisTime, &context->keccakBytesGiven, raw, outputMultiplier);
    } else { // squeeze the sponge!

        // Output up to 1024 bits at a time.
        uint32_t bytesToWrite = 1024u / 8u;

        if (bytesToWrite > context->keccakBytesGiven) {
            bytesToWrite = context->keccakBytesGiven;
        }

        KeccakExtract(keccakState, result, bytesToWrite / 8u);
        KeccakPermutation(keccakState);

        context->keccakBytesGiven -= bytesToWrite;
        return bytesToWrite;
    }
    return 0;
}