1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/* Library for the Infinite Noise Multiplier USB stick */
// Required to include clock_gettime
#define _POSIX_C_SOURCE 200809L
#define INFNOISE_VENDOR_ID 0x0403
#define INFNOISE_PRODUCT_ID 0x6015
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sys/types.h>
#include <ftdi.h>
#include "libinfnoise_private.h"
#include "KeccakF-1600-interface.h"
#if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || defined(__FreeBSD__)
#include <fcntl.h>
#endif
uint8_t keccakState[KeccakPermutationSizeInBytes];
uint8_t outBuf[BUFLEN];
void prepareOutputBuffer() {
uint32_t i;
// Endless loop: set SW1EN and SW2EN alternately
for (i = 0u; i < BUFLEN; i+=2) {
// Alternate Ph1 and Ph2
outBuf[i] = (1 << SWEN1);
outBuf[i+1] = (1 << SWEN2);
}
}
bool initInfnoise(struct infnoise_context *context, char *serial, bool keccak, bool debug) {
context->message="";
context->entropyThisTime=0;
context->errorFlag=false;
context->keccakBytesGiven=0;
prepareOutputBuffer();
// initialize health check
if (!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
context->message = "Can't initialize health checker";
return false;
}
// initialize USB
if (!initializeUSB(&context->ftdic, &context->message, serial)) {
// Sometimes have to do it twice - not sure why
if (!initializeUSB(&context->ftdic, &context->message, serial)) {
return false;
}
}
// initialize keccak
if (keccak) {
KeccakInitialize();
KeccakInitializeState(keccakState);
}
// let healthcheck collect some data
uint32_t maxWarmupRounds = 5000;
uint32_t warmupRounds = 0;
//bool errorFlag = false;
while (!inmHealthCheckOkToUseData()) {
readData(context, NULL, true, 1);
warmupRounds++;
}
if (warmupRounds > maxWarmupRounds) {
context->message = "Unable to collect enough entropy to initialize health checker.";
return false;
}
return true;
}
void deinitInfnoise(struct infnoise_context *context)
{
inmHealthCheckStop();
ftdi_usb_close(&context->ftdic);
ftdi_deinit(&context->ftdic);
}
// Extract the INM output from the data received. Basically, either COMP1 or COMP2
// changes, not both, so alternate reading bits from them. We get 1 INM bit of output
// per byte read. Feed bits from the INM to the health checker. Return the expected
// bits of entropy.
uint32_t extractBytes(uint8_t *bytes, uint32_t length, uint8_t *inBuf, const char **message, bool *errorFlag) {
inmClearEntropyLevel();
uint32_t i;
for (i = 0u; i < length; i++) {
uint32_t j;
uint8_t byte = 0u;
for (j = 0u; j < 8u; j++) {
uint8_t val = inBuf[i * 8u + j];
uint8_t evenBit = (val >> COMP2) & 1u;
uint8_t oddBit = (val >> COMP1) & 1u;
bool even = j & 1u; // Use the even bit if j is odd
uint8_t bit = even ? evenBit : oddBit;
byte = (byte << 1u) | bit;
// This is a good place to feed the bit from the INM to the health checker.
if (!inmHealthCheckAddBit(evenBit, oddBit, even)) {
*message = "Health check of Infinite Noise Multiplier failed!";
*errorFlag = true;
return 0;
}
}
bytes[i] = byte;
}
return inmGetEntropyLevel();
}
// Return the difference in the times as a double in microseconds.
double diffTime(struct timespec *start, struct timespec *end) {
uint32_t seconds = end->tv_sec - start->tv_sec;
int32_t nanoseconds = end->tv_nsec - start->tv_nsec;
return seconds * 1.0e6 + nanoseconds / 1000.0;
}
bool isSuperUser(void) {
return (geteuid() == 0);
}
// let's do it recursive, because if sth. fails we can easily wipe the malloc()
infnoise_devlist_node_t* inf_get_devstrings(struct ftdi_context* ftdic,
struct ftdi_device_list* curdev,
const char** message,
infnoise_devlist_node_t* bgn,
infnoise_devlist_node_t* end) {
if( curdev != NULL ) {
infnoise_devlist_node_t* cur;
cur = (infnoise_devlist_node_t*) malloc (sizeof(infnoise_devlist_node_t));
cur->next = NULL;
int rc = ftdi_usb_get_strings(ftdic, curdev->dev,
cur->manufacturer, sizeof(cur->manufacturer),
cur->description, sizeof(cur->description),
cur->serial, sizeof(cur->serial));
if (rc < 0) {
*message = ftdi_get_error_string(ftdic);
free( cur );
return NULL;
}
else {
// in case bgn is NULL, then implicitly end is NULL, also the other way around
if(bgn == NULL) {
bgn = cur;
}
else {
end->next = cur;
}
infnoise_devlist_node_t* ret;
ret = inf_get_devstrings(ftdic, curdev->next, message, bgn, cur);
// a next dev triggered issue? -> wipe current
if( ret == NULL ) {
free( cur );
}
return ret;
}
}
return bgn;
}
// Return a list of all infinite noise multipliers found.
infnoise_devlist_node_t* listUSBDevices(const char **message) {
struct ftdi_context ftdic;
if(ftdi_init(&ftdic) < 0) {
*message = "Failed to init";
return NULL;
}
infnoise_devlist_node_t* retlist = NULL;
struct ftdi_device_list *devlist = NULL;
if (ftdi_usb_find_all(&ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0
|| devlist == NULL) {
if (!isSuperUser()) {
*message = "Can't find Infinite Noise Multiplier. Try running as super user?";
} else {
*message = "Can't find Infinite Noise Multiplier.";
}
}
else {
retlist = inf_get_devstrings(&ftdic, devlist, message, NULL, NULL);
ftdi_list_free2(devlist);
}
ftdi_deinit(&ftdic);
return retlist;
}
// Initialize the Infinite Noise Multiplier USB interface.
bool initializeUSB(struct ftdi_context *ftdic, const char **message, char *serial) {
ftdi_init(ftdic);
struct ftdi_device_list *devlist;
// search devices
int rc = ftdi_usb_find_all(ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID);
if (rc < 0) {
*message = "Can't find Infinite Noise Multiplier";
return false;
}
ftdi_list_free2(devlist);
// only one found, or no serial given
if (serial == NULL) {
// more than one found AND no serial given
if (rc >= 2) {
*message = "Multiple Infnoise TRNGs found and serial not specified, using the first one!";
}
if (ftdi_usb_open(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0) {
if (!isSuperUser()) {
*message = "Can't open Infinite Noise Multiplier. Try running as super user?";
} else {
#ifdef LINUX
*message = "Can't open Infinite Noise Multiplier.";
#endif
#if defined(__APPLE__)
*message = "Can't open Infinite Noise Multiplier. sudo kextunload -b com.FTDI.driver.FTDIUSBSerialDriver ? sudo kextunload -b com.apple.driver.AppleUSBFTDI ?";
#endif
}
return false;
}
} else {
// serial specified
if (ftdi_usb_open_desc(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID, NULL, serial) < 0) {
if (!isSuperUser()) {
*message = "Can't find Infinite Noise Multiplier. Try running as super user?";
} else {
*message = "Can't find Infinite Noise Multiplier with given serial";
}
return false;
}
}
// Set high baud rate
switch (ftdi_set_baudrate(ftdic, 30000)) {
case -1:
*message = "Invalid baud rate";
return false;
case -2:
*message = "Setting baud rate failed";
return false;
case -3:
*message = "Infinite Noise Multiplier unavailable";
return false;
default:
break;
}
switch (ftdi_set_bitmode(ftdic, MASK, BITMODE_SYNCBB)) {
case -1:
*message = "Can't enable bit-bang mode";
return false;
case -2:
*message = "Infinite Noise Multiplier unavailable\n";
return false;
default:
break;
}
// Just test to see that we can write and read.
uint8_t buf[64u] = {0u,};
if (ftdi_write_data(ftdic, buf, sizeof(buf)) != sizeof(buf)) {
*message = "USB write failed";
return false;
}
if (ftdi_read_data(ftdic, buf, sizeof(buf)) != sizeof(buf)) {
*message = "USB read failed";
return false;
}
return true;
}
// Whiten the output, if requested, with a Keccak sponge. Output bytes only if the health
// checker says it's OK. Using outputMultiplier > 1 is a nice way to generate a lot more
// cryptographically secure pseudo-random data than the INM generates. If
// outputMultiplier is 0, we output only as many bits as we measure in entropy.
// This allows a user to generate hundreds of MiB per second if needed, for use
// as cryptographic keys.
uint32_t processBytes(uint8_t *bytes, uint8_t *result, uint32_t *entropy,
uint32_t *bytesGiven,
bool raw, uint32_t outputMultiplier) {
//Use the lower of the measured entropy and the provable lower bound on
//average entropy.
if (*entropy > inmExpectedEntropyPerBit * BUFLEN / INM_ACCURACY) {
*entropy = inmExpectedEntropyPerBit * BUFLEN / INM_ACCURACY;
}
if (raw) {
// In raw mode, we just output raw data from the INM.
if (result != NULL) {
memcpy(result, bytes, BUFLEN / 8u * sizeof(uint8_t));
}
return BUFLEN / 8u;
}
// Note that BUFLEN has to be less than 1600 by enough to make the sponge secure,
// since outputting all 1600 bits would tell an attacker the Keccak state, allowing
// him to predict any further output, when outputMultiplier > 1, until the next call
// to processBytes. All 512 bits are absorbed before squeezing data out to ensure that
// we instantly recover (reseed) from a state compromise, which is when an attacker
// gets a snapshot of the keccak state. BUFLEN must be a multiple of 64, since
// Keccak-1600 uses 64-bit "lanes".
uint8_t resultSize;
if (outputMultiplier <= 2) {
resultSize = 64u;
} else {
resultSize = 128u;
}
uint8_t dataOut[resultSize];
KeccakAbsorb(keccakState, bytes, BUFLEN / 64u);
if (outputMultiplier == 0u) {
// Output all the bytes of entropy we have
KeccakExtract(keccakState, dataOut, (*entropy + 63u) / 64u);
if (result != NULL) {
memcpy(result, dataOut, *entropy / 8u * sizeof(uint8_t));
}
return *entropy / 8u;
}
// Output 256*outputMultipler bits (in chunks of 1024)
// only the first 1024 now,
if (*bytesGiven == 0u) {
*bytesGiven = outputMultiplier*256u / 8u;
// Output up to 1024 bits at a time.
uint32_t bytesToWrite = 1024u / 8u;
if (bytesToWrite > *bytesGiven) {
bytesToWrite = *bytesGiven;
}
KeccakExtract(keccakState, result, bytesToWrite / 8u);
KeccakPermutation(keccakState);
*bytesGiven -= bytesToWrite;
return bytesToWrite;
}
return 0;
}
uint32_t readData(struct infnoise_context *context, uint8_t *result, bool raw, uint32_t outputMultiplier) {
// check if data can be squeezed from the keccak sponge from previous state (or we need to collect some new entropy to get bytesGiven >0)
if (context->keccakBytesGiven == 0u) { // collect new entropy (e.g. case RAW)
uint8_t inBuf[BUFLEN];
struct timespec start, end;
clock_gettime(CLOCK_REALTIME, &start);
// write clock signal
if (ftdi_write_data(&context->ftdic, outBuf, sizeof(outBuf)) != sizeof(outBuf)) {
context->message = "USB write failed";
context->errorFlag = true;
}
// and read 512 byte from the internal buffer (in synchronous bitbang mode)
if (ftdi_read_data(&context->ftdic, inBuf, sizeof(inBuf)) != sizeof(inBuf)) {
context->message = "USB read failed";
context->errorFlag = true;
return 0;
}
clock_gettime(CLOCK_REALTIME, &end);
if (diffTime(&start, &end) > MAX_MICROSEC_FOR_SAMPLES)
return 0;
uint8_t bytes[BUFLEN / 8u];
context->entropyThisTime = extractBytes(bytes, sizeof(bytes), inBuf, &context->message, &context->errorFlag);
if (context->errorFlag
|| ! (inmHealthCheckOkToUseData()
&& inmEntropyOnTarget(context->entropyThisTime, BUFLEN)) ) {
// todo: message?
return 0;
}
// called health check are ok and return bytes
return processBytes(bytes, result, &context->entropyThisTime, &context->keccakBytesGiven, raw, outputMultiplier);
} else { // squeeze the sponge!
// Output up to 1024 bits at a time.
uint32_t bytesToWrite = 1024u / 8u;
if (bytesToWrite > context->keccakBytesGiven) {
bytesToWrite = context->keccakBytesGiven;
}
KeccakExtract(keccakState, result, bytesToWrite / 8u);
KeccakPermutation(keccakState);
context->keccakBytesGiven -= bytesToWrite;
return bytesToWrite;
}
return 0;
}
|