1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#!/usr/bin/env python
'''
Copyright (C) 2005 Aaron Spike, aaron@ekips.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
'''
import math, cmath
def rootWrapper(a,b,c,d):
if a:
#TODO: find a new cubic solver and put it here
#return solveCubicMonic(b/a,c/a,d/a)
return ()
elif b:
det=c**2.0-4.0*b*d
if det:
return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b)
else:
return -c/(2.0*b),
elif c:
return 1.0*(-d/c),
return ()
def bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
#parametric bezier
x0=bx0
y0=by0
cx=3*(bx1-x0)
bx=3*(bx2-bx1)-cx
ax=bx3-x0-cx-bx
cy=3*(by1-y0)
by=3*(by2-by1)-cy
ay=by3-y0-cy-by
return ax,ay,bx,by,cx,cy,x0,y0
#ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
def linebezierintersect(((lx1,ly1),(lx2,ly2)),((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
#parametric line
dd=lx1
cc=lx2-lx1
bb=ly1
aa=ly2-ly1
if aa:
coef1=cc/aa
coef2=1
else:
coef1=1
coef2=aa/cc
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
#cubic intersection coefficients
a=coef1*ay-coef2*ax
b=coef1*by-coef2*bx
c=coef1*cy-coef2*cx
d=coef1*(y0-bb)-coef2*(x0-dd)
roots = rootWrapper(a,b,c,d)
retval = []
for i in roots:
if type(i) is complex and i.imag==0:
i = i.real
if type(i) is not complex and 0<=i<=1:
retval.append(i)
return retval
def bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
x=ax*(t**3)+bx*(t**2)+cx*t+x0
y=ay*(t**3)+by*(t**2)+cy*t+y0
return x,y
def bezierslopeatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
dx=3*ax*(t**2)+2*bx*t+cx
dy=3*ay*(t**2)+2*by*t+cy
return dx,dy
def beziertatslope(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),(dy,dx)):
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
#quadratic coefficents of slope formula
if dx:
slope = 1.0*(dy/dx)
a=3*ay-3*ax*slope
b=2*by-2*bx*slope
c=cy-cx*slope
elif dy:
slope = 1.0*(dx/dy)
a=3*ax-3*ay*slope
b=2*bx-2*by*slope
c=cx-cy*slope
else:
return []
roots = rootWrapper(0,a,b,c)
retval = []
for i in roots:
if type(i) is complex and i.imag==0:
i = i.real
if type(i) is not complex and 0<=i<=1:
retval.append(i)
return retval
def tpoint((x1,y1),(x2,y2),t):
return x1+t*(x2-x1),y1+t*(y2-y1)
def beziersplitatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
m1=tpoint((bx0,by0),(bx1,by1),t)
m2=tpoint((bx1,by1),(bx2,by2),t)
m3=tpoint((bx2,by2),(bx3,by3),t)
m4=tpoint(m1,m2,t)
m5=tpoint(m2,m3,t)
m=tpoint(m4,m5,t)
return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3))
'''
Approximating the arc length of a bezier curve
according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves>
if:
L1 = |P0 P1| +|P1 P2| +|P2 P3|
L0 = |P0 P3|
then:
L = 1/2*L0 + 1/2*L1
ERR = L1-L0
ERR approaches 0 as the number of subdivisions (m) increases
2^-4m
Reference:
Jens Gravesen <gravesen@mat.dth.dk>
"Adaptive subdivision and the length of Bezier curves"
mat-report no. 1992-10, Mathematical Institute, The Technical
University of Denmark.
'''
def pointdistance((x1,y1),(x2,y2)):
return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
def Gravesen_addifclose(b, len, error = 0.001):
box = 0
for i in range(1,4):
box += pointdistance(b[i-1], b[i])
chord = pointdistance(b[0], b[3])
if (box - chord) > error:
first, second = beziersplitatt(b, 0.5)
Gravesen_addifclose(first, len, error)
Gravesen_addifclose(second, len, error)
else:
len[0] += (box / 2.0) + (chord / 2.0)
def bezierlengthGravesen(b, error = 0.001):
len = [0]
Gravesen_addifclose(b, len, error)
return len[0]
# balf = Bezier Arc Length Function
balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0
def balf(t):
retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2
return math.sqrt(retval)
def Simpson(f, a, b, n_limit, tolerance):
n = 2
multiplier = (b - a)/6.0
endsum = f(a) + f(b)
interval = (b - a)/2.0
asum = 0.0
bsum = f(a + interval)
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
est0 = 2.0 * est1
#print multiplier, endsum, interval, asum, bsum, est1, est0
while n < n_limit and abs(est1 - est0) > tolerance:
n *= 2
multiplier /= 2.0
interval /= 2.0
asum += bsum
bsum = 0.0
est0 = est1
for i in xrange(1, n, 2):
bsum += f(a + (i * interval))
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
#print multiplier, endsum, interval, asum, bsum, est1, est0
return est1
def bezierlengthSimpson(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), tolerance = 0.001):
global balfax,balfbx,balfcx,balfay,balfby,balfcy
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
return Simpson(balf, 0.0, 1.0, 4096, tolerance)
def beziertatlength(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), l = 0.5, tolerance = 0.001):
global balfax,balfbx,balfcx,balfay,balfby,balfcy
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
t = 1.0
tdiv = t
curlen = Simpson(balf, 0.0, t, 4096, tolerance)
targetlen = l * curlen
diff = curlen - targetlen
while abs(diff) > tolerance:
tdiv /= 2.0
if diff < 0:
t += tdiv
else:
t -= tdiv
curlen = Simpson(balf, 0.0, t, 4096, tolerance)
diff = curlen - targetlen
return t
#default bezier length method
bezierlength = bezierlengthSimpson
if __name__ == '__main__':
import timing
#print linebezierintersect(((,),(,)),((,),(,),(,),(,)))
#print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0)))
tol = 0.00000001
curves = [((0,0),(1,5),(4,5),(5,5)),
((0,0),(0,0),(5,0),(10,0)),
((0,0),(0,0),(5,1),(10,0)),
((-10,0),(0,0),(10,0),(10,10)),
((15,10),(0,0),(10,0),(-5,10))]
'''
for curve in curves:
timing.start()
g = bezierlengthGravesen(curve,tol)
timing.finish()
gt = timing.micro()
timing.start()
s = bezierlengthSimpson(curve,tol)
timing.finish()
st = timing.micro()
print g, gt
print s, st
'''
for curve in curves:
print beziertatlength(curve,0.5)
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99
|