1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
# coding=utf-8
#
# Copyright (C) 2008 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
Base class for HGPL Encoding
"""
import re
import math
import inkex
from inkex.transforms import Transform, DirectedLineSegment, Vector2d
from inkex.bezier import cspsubdiv
class NoPathError(ValueError):
"""Raise that paths not selected"""
# Find the pen number in the layer number
FIND_PEN = re.compile(r"\s*pen\s*(\d+)\s*", re.IGNORECASE)
# Find the pen speed in the layer number
FIND_SPEED = re.compile(r"\s*speed\s*(\d+)\s*", re.IGNORECASE)
# Find pen force in the layer name
FIND_FORCE = re.compile(r"\s*force\s*(\d+)\s*", re.IGNORECASE)
class hpglEncoder(object):
"""HPGL Encoder, used by others"""
def __init__(self, effect):
"""options:
"resolutionX":float
"resolutionY":float
"pen":int
"force:int
"speed:int
"orientation":string // "0", "90", "-90", "180"
"mirrorX":bool
"mirrorY":bool
"center":bool
"flat":float
"overcut":float
"toolOffset":float
"precut":bool
"autoAlign":bool
"""
self.options = effect.options
self.doc = effect.svg
self.docWidth = effect.svg.viewbox_width
self.docHeight = effect.svg.viewbox_height
self.hpgl = ""
self.divergenceX = "False"
self.divergenceY = "False"
self.sizeX = "False"
self.sizeY = "False"
self.dryRun = True
self.lastPoint = [0, 0, 0]
self.lastPen = -1
self.lastSpeed = -1
self.lastForce = -1
self.offsetX = 0
self.offsetY = 0
# dots per inch to dots per user unit:
self.scaleX = self.options.resolutionX / effect.svg.viewport_to_unit("1.0in")
self.scaleY = self.options.resolutionY / effect.svg.viewport_to_unit("1.0in")
scaleXY = (self.scaleX + self.scaleY) / 2
# mm to dots (plotter coordinate system):
self.overcut = (
effect.svg.viewport_to_unit(str(self.options.overcut) + "mm") * scaleXY
)
self.toolOffset = (
effect.svg.viewport_to_unit(str(self.options.toolOffset) + "mm") * scaleXY
)
# scale flatness to resolution:
self.flat = self.options.flat / (
1016 / ((self.options.resolutionX + self.options.resolutionY) / 2)
)
if self.toolOffset > 0.0:
self.toolOffsetFlat = (
self.flat / self.toolOffset * 4.5
) # scale flatness to offset
else:
self.toolOffsetFlat = 0.0
self.mirrorX = -1.0 if self.options.mirrorX else 1.0
self.mirrorY = 1.0 if self.options.mirrorY else -1.0
# process viewBox attribute to correct page scaling
self.viewBoxTransformX = 1
self.viewBoxTransformY = 1
viewBox = effect.svg.get_viewbox()
if viewBox and viewBox[2] and viewBox[3]:
self.viewBoxTransformX = self.docWidth / effect.svg.viewport_to_unit(
effect.svg.add_unit(viewBox[2])
)
self.viewBoxTransformY = self.docHeight / effect.svg.viewport_to_unit(
effect.svg.add_unit(viewBox[3])
)
def getHpgl(self):
"""Return the HPGL instructions"""
# dryRun to find edges
transform = Transform(
[
[self.mirrorX * self.scaleX * self.viewBoxTransformX, 0.0, 0.0],
[0.0, self.mirrorY * self.scaleY * self.viewBoxTransformY, 0.0],
]
)
transform.add_rotate(int(self.options.orientation))
self.vData = [
["", "False", 0],
["", "False", 0],
["", "False", 0],
["", "False", 0],
]
self.process_group(self.doc, transform)
if (
self.divergenceX == "False"
or self.divergenceY == "False"
or self.sizeX == "False"
or self.sizeY == "False"
):
raise NoPathError("No paths found")
# live run
self.dryRun = False
# move drawing according to various modifiers
if self.options.autoAlign:
if self.options.center:
self.offsetX -= (self.sizeX - self.divergenceX) / 2
self.offsetY -= (self.sizeY - self.divergenceY) / 2
else:
self.divergenceX = 0.0
self.divergenceY = 0.0
if self.options.center:
if self.options.orientation == "0":
self.offsetX -= (self.docWidth * self.scaleX) / 2
self.offsetY += (self.docHeight * self.scaleY) / 2
if self.options.orientation == "90":
self.offsetY += (self.docWidth * self.scaleX) / 2
self.offsetX += (self.docHeight * self.scaleY) / 2
if self.options.orientation == "180":
self.offsetX += (self.docWidth * self.scaleX) / 2
self.offsetY -= (self.docHeight * self.scaleY) / 2
if self.options.orientation == "270":
self.offsetY -= (self.docWidth * self.scaleX) / 2
self.offsetX -= (self.docHeight * self.scaleY) / 2
else:
if self.options.orientation == "0":
self.offsetY += self.docHeight * self.scaleY
if self.options.orientation == "90":
self.offsetY += self.docWidth * self.scaleX
self.offsetX += self.docHeight * self.scaleY
if self.options.orientation == "180":
self.offsetX += self.docWidth * self.scaleX
if not self.options.center and self.toolOffset > 0.0:
self.offsetX += self.toolOffset
self.offsetY += self.toolOffset
# initialize transformation matrix and cache
transform = Transform(
[
[
self.mirrorX * self.scaleX * self.viewBoxTransformX,
0.0,
-float(self.divergenceX) + self.offsetX,
],
[
0.0,
self.mirrorY * self.scaleY * self.viewBoxTransformY,
-float(self.divergenceY) + self.offsetY,
],
]
)
transform.add_rotate(int(self.options.orientation))
self.vData = [
["", "False", 0],
["", "False", 0],
["", "False", 0],
["", "False", 0],
]
# add move to zero point and precut
if self.toolOffset > 0.0 and self.options.precut:
if self.options.center:
# position precut outside of drawing plus one time the tooloffset
if self.offsetX >= 0.0:
precutX = self.offsetX + self.toolOffset
else:
precutX = self.offsetX - self.toolOffset
if self.offsetY >= 0.0:
precutY = self.offsetY + self.toolOffset
else:
precutY = self.offsetY - self.toolOffset
self.processOffset(
"PU",
Vector2d(precutX, precutY),
self.options.pen,
self.options.speed,
self.options.force,
)
self.processOffset(
"PD",
Vector2d(precutX, precutY + self.toolOffset * 8),
self.options.pen,
self.options.speed,
self.options.force,
)
else:
self.processOffset(
"PU",
Vector2d(0, 0),
self.options.pen,
self.options.speed,
self.options.force,
)
self.processOffset(
"PD",
Vector2d(0, self.toolOffset * 8),
self.options.pen,
self.options.speed,
self.options.force,
)
# start conversion
self.process_group(self.doc, transform)
# shift an empty node in in order to process last node in cache
if self.toolOffset > 0.0 and not self.dryRun:
self.processOffset("PU", Vector2d(0, 0), 0, 0, 0)
return self.hpgl
def process_group(self, group, transform):
"""flatten layers and groups to avoid recursion"""
for child in group:
if not isinstance(child, inkex.ShapeElement):
continue
if child.is_visible():
if isinstance(child, inkex.Group):
self.process_group(child, transform)
elif isinstance(child, inkex.PathElement):
self.process_path(child, transform)
else:
# This only works for shape elements (not text yet!)
new_elem = child.replace_with(child.to_path_element())
# Element is given composed transform b/c it's not added back to doc
new_elem.transform = child.composed_transform()
self.process_path(new_elem, transform)
def get_pen_number(self, node):
"""Get pen number for node label (usually group)"""
for parent in [node] + list(node.ancestors()):
match = FIND_PEN.search(parent.label or "")
if match:
return int(match.group(1))
return int(self.options.pen)
def get_pen_speed(self, node):
"""Get pen speed for node label (usually group)"""
for parent in [node] + list(node.ancestors()):
match = FIND_SPEED.search(parent.label or "")
if match:
return int(match.group(1))
return int(self.options.speed)
def get_pen_force(self, node):
"""Get pen force for node label (usually group)"""
for parent in [node] + list(node.ancestors()):
match = FIND_FORCE.search(parent.label or "")
if match:
return int(match.group(1))
return int(self.options.force)
def process_path(self, node, transform):
"""Process the given element into a plotter path"""
pen = self.get_pen_number(node)
speed = self.get_pen_speed(node)
force = self.get_pen_force(node)
path = (
node.path.to_absolute()
.transform(node.composed_transform())
.transform(transform)
.to_superpath()
)
if path:
cspsubdiv(path, self.flat)
# path to HPGL commands
oldPosX = 0.0
oldPosY = 0.0
for singlePath in path:
cmd = "PU"
for singlePathPoint in singlePath:
posX, posY = singlePathPoint[1]
# check if point is repeating, if so, ignore
if int(round(posX)) != int(round(oldPosX)) or int(
round(posY)
) != int(round(oldPosY)):
self.processOffset(cmd, Vector2d(posX, posY), pen, speed, force)
cmd = "PD"
oldPosX = posX
oldPosY = posY
# perform overcut
if self.overcut > 0.0 and not self.dryRun:
# check if last and first points are the same, otherwise the path
# is not closed and no overcut can be performed
if int(round(oldPosX)) == int(round(singlePath[0][1][0])) and int(
round(oldPosY)
) == int(round(singlePath[0][1][1])):
overcutLength = 0
for singlePathPoint in singlePath:
posX, posY = singlePathPoint[1]
# check if point is repeating, if so, ignore
if int(round(posX)) != int(round(oldPosX)) or int(
round(posY)
) != int(round(oldPosY)):
overcutLength += (
Vector2d(posX, posY) - (oldPosX, oldPosY)
).length
if overcutLength >= self.overcut:
newEndPoint = self.changeLength(
Vector2d(oldPosX, oldPosY),
Vector2d(posX, posY),
-(overcutLength - self.overcut),
)
self.processOffset(
cmd, newEndPoint, pen, speed, force
)
break
self.processOffset(
cmd, Vector2d(posX, posY), pen, speed, force
)
oldPosX = posX
oldPosY = posY
def changeLength(self, p1, p2, offset):
"""change length of line"""
if p1.x == p2.x and p1.y == p2.y: # abort if points are the same
return p1
return Vector2d(DirectedLineSegment(p2, p1).point_at_length(-offset))
def processOffset(self, cmd, point, pen, speed, force):
"""Calculate offset correction"""
if self.toolOffset == 0.0 or self.dryRun:
self.storePoint(cmd, point, pen, speed, force)
else:
# insert data into cache
self.vData.pop(0)
self.vData.insert(3, [cmd, point, pen, speed, force])
# decide if enough data is available
if self.vData[2][1] != "False":
if self.vData[1][1] == "False":
self.storePoint(
self.vData[2][0],
self.vData[2][1],
self.vData[2][2],
self.vData[2][3],
self.vData[2][4],
)
else:
# perform tool offset correction (It's a *tad* complicated, if you want
# to understand it draw the data as lines on paper)
if self.vData[2][0] == "PD":
# If the 3rd entry in the cache is a pen down command,
# make the line longer by the tool offset
pointThree = self.changeLength(
self.vData[1][1], self.vData[2][1], self.toolOffset
)
self.storePoint(
"PD",
pointThree,
self.vData[2][2],
self.vData[2][3],
self.vData[2][4],
)
elif self.vData[0][1] != "False":
# Elif the 1st entry in the cache is filled with data and the 3rd entry
# is a pen up command shift the 3rd entry by the current tool offset
# position according to the 2nd command
pointThree = self.changeLength(
self.vData[0][1], self.vData[1][1], self.toolOffset
)
pointThree = self.vData[2][1] - (self.vData[1][1] - pointThree)
self.storePoint(
"PU",
pointThree,
self.vData[2][2],
self.vData[2][3],
self.vData[2][4],
)
else:
# Else just write the 3rd entry
pointThree = self.vData[2][1]
self.storePoint(
"PU",
pointThree,
self.vData[2][2],
self.vData[2][3],
self.vData[2][4],
)
if self.vData[3][0] == "PD":
# If the 4th entry in the cache is a pen down command guide tool to next
# line with a circle between the prolonged 3rd and 4th entry
originalSegment = DirectedLineSegment(
self.vData[2][1], self.vData[3][1]
)
if originalSegment.length >= self.toolOffset:
pointFour = self.changeLength(
originalSegment.end,
originalSegment.start,
-self.toolOffset,
)
else:
pointFour = self.changeLength(
originalSegment.start,
originalSegment.end,
self.toolOffset - originalSegment.length,
)
# get angle start and angle vector
angleStart = DirectedLineSegment(
self.vData[2][1], pointThree
).angle
angleVector = (
DirectedLineSegment(self.vData[2][1], pointFour).angle
- angleStart
)
# switch direction when arc is bigger than 180°
if angleVector > math.pi:
angleVector -= math.pi * 2
elif angleVector < -math.pi:
angleVector += math.pi * 2
# draw arc
if angleVector >= 0:
angle = angleStart + self.toolOffsetFlat
while angle < angleStart + angleVector:
self.storePoint(
"PD",
self.vData[2][1]
+ self.toolOffset
* Vector2d(math.cos(angle), math.sin(angle)),
self.vData[2][2],
self.vData[2][3],
self.vData[2][4],
)
angle += self.toolOffsetFlat
else:
angle = angleStart - self.toolOffsetFlat
while angle > angleStart + angleVector:
self.storePoint(
"PD",
self.vData[2][1]
+ self.toolOffset
* Vector2d(math.cos(angle), math.sin(angle)),
self.vData[2][2],
self.vData[2][3],
self.vData[2][4],
)
angle -= self.toolOffsetFlat
self.storePoint(
"PD",
pointFour,
self.vData[3][2],
self.vData[2][3],
self.vData[2][4],
)
def storePoint(self, command, point, pen, speed, force):
x = int(round(point.x))
y = int(round(point.y))
# skip when no change in movement
if (
self.lastPoint[0] == command
and self.lastPoint[1] == x
and self.lastPoint[2] == y
):
return
if self.dryRun:
# find edges
if self.divergenceX == "False" or x < self.divergenceX:
self.divergenceX = x
if self.divergenceY == "False" or y < self.divergenceY:
self.divergenceY = y
if self.sizeX == "False" or x > self.sizeX:
self.sizeX = x
if self.sizeY == "False" or y > self.sizeY:
self.sizeY = y
else:
# store point
if not self.options.center:
# only positive values are allowed (usually)
if x < 0:
x = 0
if y < 0:
y = 0
# select correct pen
if self.lastPen != pen:
self.hpgl += ";PU;SP%d" % pen
if self.lastSpeed != speed:
if speed > 0:
self.hpgl += ";VS%d" % speed
if self.lastForce != force:
if force > 0:
self.hpgl += ";FS%d" % force
# do not repeat command
if command == "PD" and self.lastPoint[0] == "PD" and self.lastPen == pen:
self.hpgl += ",%d,%d" % (x, y)
else:
self.hpgl += ";%s%d,%d" % (command, x, y)
self.lastPen = pen
self.lastSpeed = speed
self.lastForce = force
self.lastPoint = [command, x, y]
|