1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2006 Jean-Francois Barraud, barraud@math.univ-lille1.fr
# 2021 Jonathan Neuhauser, jonathan.neuhauser@outlook.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# barraud@math.univ-lille1.fr
#
"""
This code defines a basic class (PathModifier) of effects whose purpose is
to somehow deform given objects: one common tasks for all such effect is to
convert shapes, groups, clones to paths. The class has several functions to
make this (more or less!) easy.
As an example, a second class (Diffeo) is derived from it,
to implement deformations of the form X=f(x,y), Y=g(x,y)...
"""
import inkex
from inkex import PathElement, Group, Use
from inkex.bezier import pointdistance, beziersplitatt
# This deprecated API is used by some external extensions.
from inkex.deprecated import zSort # pylint: disable=unused-import
class PathModifier(inkex.EffectExtension):
"""Select list manipulation"""
def expand_groups(self, elements, transferTransform=True):
for node_id, node in list(elements.items()):
if isinstance(node, inkex.Group):
mat = node.transform
for child in node:
if transferTransform:
child.transform = mat @ child.transform
elements.update(self.expand_groups({child.get("id"): child}))
if transferTransform and node.get("transform"):
del node.attrib["transform"]
# Group is now replaced, so remove it.
elements.pop(node_id)
return elements
def expand_clones(self, elements, transferTransform=True, replace=True):
for node_id, node in list(elements.items()):
if isinstance(node, Group):
self.expand_groups(elements, transferTransform)
self.expand_clones(elements, transferTransform, replace)
# Hum... not very efficient if there are many clones of groups...
elif isinstance(node, Use):
newnode = node.unlink()
elements.pop(node_id)
newid = newnode.get("id")
elements.update(
self.expand_clones({newid: newnode}, transferTransform, replace)
)
return elements
def objects_to_paths(self, elements, replace=True):
"""Replace all non-paths with path objects"""
for node in list(elements.values()):
elem = node.to_path_element()
if replace:
node.replace_with(elem)
elem.set("id", node.get("id"))
elements[elem.get("id")] = elem
def effect(self):
raise NotImplementedError("overwrite this method in subclasses")
self.objects_to_paths(self.svg.selection, True)
self.bbox = self.svg.selection.bounding_box()
for node in self.svg.selection.filter(PathElement):
path = node.path.to_superpath()
# do what ever you want with "path"!
node.path = path
@staticmethod
def lengthtotime(l, lengths, isclosed):
"""
Receives an arc length l, and returns the index of the segment in skelcomp
containing the corresponding point, to gether with the position of the point on this segment.
If the deformer is closed, do computations modulo the toal length.
"""
if isclosed:
l = l % sum(lengths)
if l <= 0:
return 0, l / lengths[0]
i = 0
while (i < len(lengths)) and (lengths[i] <= l):
l -= lengths[i]
i += 1
t = l / lengths[min(i, len(lengths) - 1)]
return i, t
@staticmethod
def flipxy(path):
"""Swaps x and y coordinate of all path vertices"""
for pathcomp in path:
for ctl in pathcomp:
for pt in ctl:
tmp = pt[0]
pt[0] = -pt[1]
pt[1] = -tmp
@staticmethod
def offset(pathcomp, dx, dy):
"""Shifts a subpath by (dx, dy)"""
for ctl in pathcomp:
for pt in ctl:
pt[0] += dx
pt[1] += dy
@staticmethod
def stretch(pathcomp, xscale, yscale, org):
"""Stretches a subpath by (xscale, yscale) relative to origin org"""
for ctl in pathcomp:
for pt in ctl:
pt[0] = org[0] + (pt[0] - org[0]) * xscale
pt[1] = org[1] + (pt[1] - org[1]) * yscale
@staticmethod
def linearize(p, tolerance=0.001):
"""
This function receives a component of a 'cubicsuperpath' and returns two things:
The path subdivided in many straight segments, and an array containing the length of each segment.
We could work with bezier path as well, but bezier arc lengths are (re)computed for each point
in the deformed object. For complex paths, this might take a while.
"""
zero = 0.000001
i = 0
d = 0
lengths = []
while i < len(p) - 1:
box = pointdistance(p[i][1], p[i][2])
box += pointdistance(p[i][2], p[i + 1][0])
box += pointdistance(p[i + 1][0], p[i + 1][1])
chord = pointdistance(p[i][1], p[i + 1][1])
if (box - chord) > tolerance:
b1, b2 = beziersplitatt(
[p[i][1], p[i][2], p[i + 1][0], p[i + 1][1]], 0.5
)
p[i][2][0], p[i][2][1] = b1[1]
p[i + 1][0][0], p[i + 1][0][1] = b2[2]
p.insert(
i + 1,
[[b1[2][0], b1[2][1]], [b1[3][0], b1[3][1]], [b2[1][0], b2[1][1]]],
)
else:
d = (box + chord) / 2
lengths.append(d)
i += 1
new = [p[i][1] for i in range(0, len(p) - 1) if lengths[i] > zero]
new.append(p[-1][1])
lengths = [l for l in lengths if l > zero]
return new, lengths
def get_patterns_and_skeletons(self, expand_patterns=False, duplicate=False):
"""Gets the pattern node and skeleton (with applied transforms) from selection"""
# first selected->pattern, all but first selected-> skeletons
skeletons = self.svg.selection.rendering_order()
elem = skeletons.pop()
if duplicate:
elem = elem.duplicate()
if expand_patterns:
patterns = {elem.get_id(): elem}
self.expand_clones(patterns, True, False)
self.objects_to_paths(patterns)
else:
patterns = elem
self.expand_clones(skeletons, True, False)
self.objects_to_paths(skeletons)
return patterns, skeletons.id_dict()
class Diffeo(PathModifier):
def applyDiffeo(self, bpt, vects=()):
# bpt is a base point and for v in vectors, v'=v-p is a tangent vector at bpt.
# Defaults to identity!
for v in vects:
v[0] -= bpt[0]
v[1] -= bpt[1]
# -- your transformations go here:
# x,y=bpt
# bpt[0]=f(x,y)
# bpt[1]=g(x,y)
# for v in vects:
# vx,vy=v
# v[0]=df/dx(x,y)*vx+df/dy(x,y)*vy
# v[1]=dg/dx(x,y)*vx+dg/dy(x,y)*vy
#
# -- !caution! y-axis is pointing downward!
for v in vects:
v[0] += bpt[0]
v[1] += bpt[1]
def effect(self):
self.expand_clones(self.svg.selection, True)
self.expand_groups(self.svg.selection, True)
self.objects_to_paths(self.svg.selection, True)
self.bbox = self.svg.selection.bounding_box()
for node in self.svg.selection.filter(PathElement):
path = node.path.to_superpath()
for sub in path:
for ctlpt in sub:
self.applyDiffeo(ctlpt[1], (ctlpt[0], ctlpt[2]))
node.path = path
|