1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
#
# Copyright (C) 2009 John Beard john.j.beard@gmail.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
This extension renders a DataMatrix 2D barcode, as specified in
BS ISO/IEC 16022:2006. Only ECC200 codes are considered, as these are the only
ones recommended for an "open" system.
The size of the DataMatrix is variable between 10x10 to 144x144
The absolute size of the DataMatrix modules (the little squares) is also
variable.
If more data is given than can be contained in one DataMatrix,
more than one DataMatrices will be produced.
Text is encoded as ASCII (the standard provides for other options, but these are
not implemented). Consecutive digits are encoded in a compressed form, halving
the space required to store them.
The basis processing flow is;
* Convert input string to codewords (modified ASCII and compressed digits)
* Split codewords into blocks of the right size for Reed-Solomon coding
* Interleave the blocks if required
* Apply Reed-Solomon coding
* De-interleave the blocks if required
* Place the codewords into the matrix bit by bit
* Render the modules in the matrix as squares
"""
import inkex
from inkex import Rectangle
from inkex.localization import inkex_gettext as _
INVALID_BIT = 2
# return parameters for the selected datamatrix size
# drow number of rows in each data region
# dcol number of cols in each data region
# reg_row number of rows of data regions
# reg_col number of cols of data regions
# nd number of data codewords per reed-solomon block
# nc number of ECC codewords per reed-solomon block
# inter number of interleaved Reed-Solomon blocks
SYMBOLS = {
# 'id': (nrow, ncol, drow, dcol, reg_row, reg_col, nd, nc, inter)
"sq10": (10, 10, 8, 8, 1, 1, 3, 5, 1),
"sq12": (12, 12, 10, 10, 1, 1, 5, 7, 1),
"sq14": (14, 14, 12, 12, 1, 1, 8, 10, 1),
"sq16": (16, 16, 14, 14, 1, 1, 12, 12, 1),
"sq18": (18, 18, 16, 16, 1, 1, 18, 14, 1),
"sq20": (20, 20, 18, 18, 1, 1, 22, 18, 1),
"sq22": (22, 22, 20, 20, 1, 1, 30, 20, 1),
"sq24": (24, 24, 22, 22, 1, 1, 36, 24, 1),
"sq26": (26, 26, 24, 24, 1, 1, 44, 28, 1),
"sq32": (32, 32, 14, 14, 2, 2, 62, 36, 1),
"sq36": (36, 36, 16, 16, 2, 2, 86, 42, 1),
"sq40": (40, 40, 18, 18, 2, 2, 114, 48, 1),
"sq44": (44, 44, 20, 20, 2, 2, 144, 56, 1),
"sq48": (48, 48, 22, 22, 2, 2, 174, 68, 1),
"sq52": (52, 52, 24, 24, 2, 2, 102, 42, 2),
"sq64": (64, 64, 14, 14, 4, 4, 140, 56, 2),
"sq72": (72, 72, 16, 16, 4, 4, 92, 36, 4),
"sq80": (80, 80, 18, 18, 4, 4, 114, 48, 4),
"sq88": (88, 88, 20, 20, 4, 4, 144, 56, 4),
"sq96": (96, 96, 22, 22, 4, 4, 174, 68, 4),
"sq104": (104, 104, 24, 24, 4, 4, 136, 56, 6),
"sq120": (120, 120, 18, 18, 6, 6, 175, 68, 6),
"sq132": (132, 132, 20, 20, 6, 6, 163, 62, 8),
# there are two separate sections of the data matrix with different interleaving
# and reed-solomon parameters. this will be handled separately.
"sq144": (144, 144, 22, 22, 6, 6, 0, 0, 0),
"rect8x18": (8, 18, 6, 16, 1, 1, 5, 7, 1),
"rect8x32": (8, 32, 6, 14, 1, 2, 10, 11, 1),
"rect12x26": (12, 26, 10, 24, 1, 1, 16, 14, 1),
"rect12x36": (12, 36, 10, 16, 1, 2, 22, 18, 1),
"rect16x36": (16, 36, 14, 16, 1, 2, 32, 24, 1),
"rect16x48": (16, 48, 14, 22, 1, 2, 49, 28, 1),
}
# CODEWORD STREAM GENERATION =========================================
# take the text input and return the codewords,
# including the Reed-Solomon error-correcting codes.
# =====================================================================
def get_codewords(text, nd, nc, inter, size144):
# convert the data to the codewords
data = list(encode_to_ascii(text))
if not size144: # render a "normal" datamatrix
data_blocks = partition_data(
data, nd * inter
) # partition into data blocks of length nd*inter -> inter Reed-Solomon block
data_blocks = interleave(
data_blocks, inter
) # interleave consecutive inter blocks if required
data_blocks = reed_solomon(
data_blocks, nd, nc
) # generate and append the Reed-Solomon codewords
data_blocks = combine_interleaved(
data_blocks, inter, nd, nc, False
) # concatenate Reed-Solomon blocks bound for the same datamatrix
else: # we have a 144x144 datamatrix
data_blocks = partition_data(
data, 1558
) # partition the data into datamtrix-sized chunks (1558 =156*8 + 155*2 )
for i in range(len(data_blocks)): # for each datamtrix
inter = 8
nd = 156
nc = 62
block1 = data_blocks[i][0 : 156 * 8]
block1 = interleave([block1], inter) # interleave into 8 blocks
block1 = reed_solomon(
block1, nd, nc
) # generate and append the Reed-Solomon codewords
inter = 2
nd = 155
nc = 62
block2 = data_blocks[i][156 * 8 :]
block2 = interleave([block2], inter) # interleave into 2 blocks
block2 = reed_solomon(
block2, nd, nc
) # generate and append the Reed-Solomon codewords
blocks = block1
blocks.extend(block2)
blocks = combine_interleaved(blocks, 10, nd, nc, True)
data_blocks[i] = blocks[0]
return data_blocks
# Takes a codeword stream and splits up into "inter" blocks.
# eg interleave( [1,2,3,4,5,6], 2 ) -> [1,3,5], [2,4,6]
def interleave(blocks, inter):
if inter == 1: # if we don't have to interleave, just return the blocks
return blocks
else:
result = []
for block in blocks: # for each codeword block in the stream
block_length = int(len(block) / inter) # length of each interleaved block
inter_blocks = [
[0] * block_length for i in range(inter)
] # the interleaved blocks
for i in range(block_length): # for each element in the interleaved blocks
for j in range(inter): # for each interleaved block
inter_blocks[j][i] = block[i * inter + j]
result.extend(inter_blocks) # add the interleaved blocks to the output
return result
# Combine interleaved blocks into the groups for the same datamatrix
#
# e.g combine_interleaved( [[d1, d3, d5, e1, e3, e5], [d2, d4, d6, e2, e4, e6]], 2, 3, 3 )
# --> [[d1, d2, d3, d4, d5, d6, e1, e2, e3, e4, e5, e6]]
def combine_interleaved(blocks, inter, nd, nc, size144):
if inter == 1: # the blocks aren't interleaved
return blocks
else:
result = []
for i in range(
len(blocks) // inter
): # for each group of "inter" blocks -> one full datamatrix
data_codewords = [] # interleaved data blocks
if size144:
nd_range = 1558 # 1558 = 156*8 + 155*2
nc_range = 620 # 620 = 62*8 + 62*2
else:
nd_range = nd * inter
nc_range = nc * inter
for j in range(nd_range): # for each codeword in the final list
data_codewords.append(blocks[i * inter + j % inter][j // inter])
for j in range(nc_range): # for each block, add the ecc codewords
data_codewords.append(blocks[i * inter + j % inter][nd + j // inter])
result.append(data_codewords)
return result
def encode_to_ascii(text):
"""Encode this text into chunks, ascii or digits"""
i = 0
while i < len(text):
# check for double digits, if the next char is also a digit
if text[i].isdigit() and (i < len(text) - 1) and text[i + 1].isdigit():
yield int(text[i] + text[i + 1]) + 130
i += 2 # move on 2 characters
else: # encode as a normal ascii,
yield ord(text[i]) + 1 # codeword is ASCII value + 1 (ISO 16022:2006 5.2.3)
i += 1 # next character
# partition data into blocks of the appropriate size to suit the
# Reed-Solomon block being used.
# e.g. partition_data([1,2,3,4,5], 3) -> [[1,2,3],[4,5,PAD]]
def partition_data(data, rs_data):
PAD_VAL = 129 # PAD codeword (ISO 16022:2006 5.2.3)
data_blocks = []
i = 0
while i < len(data):
if len(data) >= i + rs_data: # we have a whole block in our data
data_blocks.append(data[i : i + rs_data])
i = i + rs_data
else: # pad out with the pad codeword
data_block = data[i : len(data)] # add any remaining data
pad_pos = len(data)
padded = False
while (
len(data_block) < rs_data
): # and then pad with randomised pad codewords
if not padded:
data_block.append(PAD_VAL) # add a normal pad codeword
padded = True
else:
data_block.append(randomise_pad_253(PAD_VAL, pad_pos))
pad_pos += 1
data_blocks.append(data_block)
break
return data_blocks
# Pad character randomisation, to prevent regular patterns appearing
# in the data matrix
def randomise_pad_253(pad_value, pad_position):
pseudo_random_number = ((149 * pad_position) % 253) + 1
randomised = pad_value + pseudo_random_number
if randomised <= 254:
return randomised
else:
return randomised - 254
# REED-SOLOMON ENCODING ROUTINES =====================================
# "prod(x,y,log,alog,gf)" returns the product "x" times "y"
def prod(x, y, log, alog, gf):
if x == 0 or y == 0:
return 0
else:
result = alog[(log[x] + log[y]) % (gf - 1)]
return result
# generate the log & antilog lists:
def gen_log_alog(gf, pp):
log = [0] * gf
alog = [0] * gf
log[0] = 1 - gf
alog[0] = 1
for i in range(1, gf):
alog[i] = alog[i - 1] * 2
if alog[i] >= gf:
alog[i] = alog[i] ^ pp
log[alog[i]] = i
return log, alog
# generate the generator polynomial coefficients:
def gen_poly_coeffs(nc, log, alog, gf):
c = [0] * (nc + 1)
c[0] = 1
for i in range(1, nc + 1):
c[i] = c[i - 1]
j = i - 1
while j >= 1:
c[j] = c[j - 1] ^ prod(c[j], alog[i], log, alog, gf)
j -= 1
c[0] = prod(c[0], alog[i], log, alog, gf)
return c
# "ReedSolomon(wd,nd,nc)" takes "nd" data codeword values in wd[]
# and adds on "nc" check codewords, all within GF(gf) where "gf" is a
# power of 2 and "pp" is the value of its prime modulus polynomial */
def reed_solomon(data, nd, nc):
# parameters of the polynomial arithmetic
gf = 256 # operating on 8-bit codewords -> Galois field = 2^8 = 256
pp = 301 # prime modulus polynomial for ECC-200 is 0b100101101 = 301 (ISO 16022:2006 5.7.1)
log, alog = gen_log_alog(gf, pp)
c = gen_poly_coeffs(nc, log, alog, gf)
for block in data: # for each block of data codewords
block.extend([0] * (nc + 1)) # extend to make space for the error codewords
# generate "nc" checkwords in the list block
for i in range(0, nd):
k = block[nd] ^ block[i]
for j in range(0, nc):
block[nd + j] = block[nd + j + 1] ^ prod(
k, c[nc - j - 1], log, alog, gf
)
block.pop()
return data
# MODULE PLACEMENT ROUTINES===========================================
# These routines take a steam of codewords, and place them into the
# DataMatrix in accordance with Annex F of BS ISO/IEC 16022:2006
def bit(byte, bit_ch):
"""bit() returns the bit'th bit of the byte"""
# the MSB is bit 1, LSB is bit 8
return (byte >> (8 - bit_ch)) % 2
def module(array, nrow, ncol, row, col, bit_ch):
"""place a given bit with appropriate wrapping within array"""
if row < 0:
row = row + nrow
col = col + 4 - ((nrow + 4) % 8)
if col < 0:
col = col + ncol
row = row + 4 - ((ncol + 4) % 8)
array[row][col] = bit_ch
def place_square(case, array, nrow, ncol, row, col, char):
"""Populate corner cases (0-3) and utah case (-1)"""
for i in range(8):
x, y = [
[
(row - 1, 0),
(row - 1, 1),
(row - 1, 2),
(0, col - 2),
(0, col - 1),
(1, col - 1),
(2, col - 1),
(3, col - 1),
],
[
(row - 3, 0),
(row - 2, 0),
(row - 1, 0),
(0, col - 4),
(0, col - 3),
(0, col - 2),
(0, col - 1),
(1, col - 1),
],
[
(row - 3, 0),
(row - 2, 0),
(row - 1, 0),
(0, col - 2),
(0, col - 1),
(1, col - 1),
(2, col - 1),
(3, col - 1),
],
[
(row - 1, 0),
(row - 1, col - 1),
(0, col - 3),
(0, col - 2),
(0, col - 1),
(1, col - 3),
(1, col - 2),
(1, col - 1),
],
# "utah" places the 8 bits of a utah-shaped symbol character in ECC200
[
(row - 2, col - 2),
(row - 2, col - 1),
(row - 1, col - 2),
(row - 1, col - 1),
(row - 1, col),
(row, col - 2),
(row, col - 1),
(row, col),
],
][case][i]
module(array, nrow, ncol, x, y, bit(char, i + 1))
return 1
def place_bits(data, nrow, ncol):
"""fill an nrow x ncol array with the bits from the codewords in data."""
# initialise and fill with -1's (invalid value)
array = [[INVALID_BIT] * ncol for i in range(nrow)]
# Starting in the correct location for character #1, bit 8,...
char = 0
row = 4
col = 0
while True:
# first check for one of the special corner cases, then...
if (row == nrow) and (col == 0):
char += place_square(0, array, nrow, ncol, nrow, ncol, data[char])
elif (row == nrow - 2) and (col == 0) and (ncol % 4):
char += place_square(1, array, nrow, ncol, nrow, ncol, data[char])
elif (row == nrow - 2) and (col == 0) and (ncol % 8 == 4):
char += place_square(2, array, nrow, ncol, nrow, ncol, data[char])
elif (row == nrow + 4) and (col == 2) and ((ncol % 8) == 0):
char += place_square(3, array, nrow, ncol, nrow, ncol, data[char])
# sweep upward diagonally, inserting successive characters,...
while (row >= 0) and (col < ncol):
if (row < nrow) and (col >= 0) and (array[row][col] == INVALID_BIT):
char += place_square(-1, array, nrow, ncol, row, col, data[char])
row -= 2
col += 2
row += 1
col += 3
# & then sweep downward diagonally, inserting successive characters,...
while (row < nrow) and (col >= 0):
if (row >= 0) and (col < ncol) and (array[row][col] == INVALID_BIT):
char += place_square(-1, array, nrow, ncol, row, col, data[char])
row += 2
col -= 2
row += 3
col += 1
# ... until the entire array is scanned
if not ((row < nrow) or (col < ncol)):
break
# Lastly, if the lower righthand corner is untouched, fill in fixed pattern */
if array[nrow - 1][ncol - 1] == INVALID_BIT:
array[nrow - 1][ncol - 2] = 0
array[nrow - 1][ncol - 1] = 1
array[nrow - 2][ncol - 1] = 0
array[nrow - 2][ncol - 2] = 1
return array # return the array of 1's and 0's
def add_finder_pattern(array, data_nrow, data_ncol, reg_row, reg_col):
# get the total size of the datamatrix
nrow = (data_nrow + 2) * reg_row
ncol = (data_ncol + 2) * reg_col
datamatrix = [[0] * ncol for i in range(nrow)] # initialise and fill with 0's
for i in range(reg_col): # for each column of data regions
for j in range(nrow):
datamatrix[j][i * (data_ncol + 2)] = 1 # vertical black bar on left
datamatrix[j][i * (data_ncol + 2) + data_ncol + 1] = (
j % 2
) # alternating blocks
for i in range(reg_row): # for each row of data regions
for j in range(ncol):
datamatrix[i * (data_nrow + 2) + data_nrow + 1][
j
] = 1 # horizontal black bar at bottom
datamatrix[i * (data_nrow + 2)][j] = (j + 1) % 2 # alternating blocks
for i in range(data_nrow * reg_row):
for j in range(data_ncol * reg_col):
# offset by 1, plus two for every addition block
dest_col = j + 1 + 2 * (j // data_ncol)
dest_row = i + 1 + 2 * (i // data_nrow)
datamatrix[dest_row][dest_col] = array[i][
j
] # transfer from the plain bit array
return datamatrix
class DataMatrix(inkex.GenerateExtension):
container_label = "DataMatrix"
def add_arguments(self, pars):
pars.add_argument("--text", default="Inkscape")
pars.add_argument("--symbol", type=self.arg_symbols, required=True)
pars.add_argument("--size", type=int, default=4)
@staticmethod
def arg_symbols(value):
"""Turn a symbol key into matrix metrics"""
try:
return SYMBOLS[value]
except KeyError:
raise inkex.AbortExtension(_("Invalid symbol size."))
def generate(self):
size = str(self.options.size)
style = inkex.Style({"stroke": "none", "stroke-width": "1", "fill": "#000000"})
attribs = {"style": str(style), "height": size, "width": size}
if not self.options.text:
raise inkex.AbortExtension(_("Please enter an input string."))
# create a 2d list corresponding to the 1's and 0s of the DataMatrix
encoded = self.encode(self.options.text, *self.options.symbol)
for x, y in self.render_data_matrix(encoded):
attribs.update({"x": str(x), "y": str(y)})
yield Rectangle(**attribs)
def encode(
self, text, nrow, ncol, data_nrow, data_ncol, reg_row, reg_col, nd, nc, inter
):
"""
Take an input string and convert it to a sequence (or sequences)
of codewords as specified in ISO/IEC 16022:2006 (section 5.2.3)
"""
# generate the codewords including padding and ECC
codewords = get_codewords(text, nd, nc, inter, nrow == 144)
# break up into separate arrays if more than one DataMatrix is needed
module_arrays = []
for codeword_stream in codewords: # for each datamatrix
# place the codewords' bits across the array as modules
bit_array = place_bits(
codeword_stream, data_nrow * reg_row, data_ncol * reg_col
)
# add finder patterns around the modules
module_arrays.append(
add_finder_pattern(bit_array, data_nrow, data_ncol, reg_row, reg_col)
)
return module_arrays
def render_data_matrix(self, module_arrays):
"""turn a 2D array of 1's and 0's into a set of black squares"""
ncol = self.options.symbol[1]
size = self.options.size
spacing = ncol * size * 1.5
for i, line in enumerate(module_arrays):
height = len(line)
width = len(line[0])
for y in range(height): # loop over all the modules in the datamatrix
for x in range(width):
if line[y][x] == 1: # A binary 1 is a filled square
yield (x * size + i * spacing, y * size)
elif line[y][x] == INVALID_BIT: # we have an invalid bit value
inkex.errormsg(_("Invalid bit value, {}!").format(line[y][x]))
if __name__ == "__main__":
DataMatrix().run()
|