1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
/* $Id: date.c 7136 2005-03-11 19:18:27Z rra $
**
** Date parsing and conversion routines.
**
** Provides various date parsing and conversion routines, including
** generating Date headers for posted articles. Note that the parsedate
** parser is separate from this file.
*/
#include "config.h"
#include "clibrary.h"
#include <ctype.h>
#include <time.h>
#include "libinn.h"
/*
** Time constants.
**
** Do not translate these names. RFC 822 by way of RFC 1036 requires that
** weekday and month names *not* be translated. This is why we use static
** tables rather than strftime for building dates, to avoid locale
** interference.
*/
static const char WEEKDAY[7][4] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};
static const char MONTH[12][4] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",
"Nov", "Dec"
};
/* Number of days in a month. */
static const int MONTHDAYS[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
/* Non-numeric time zones. Supporting these is required to support the
obsolete date format of RFC 2822. The military time zones are handled
separately. */
static const struct {
const char name[4];
long offset;
} ZONE_OFFSET[] = {
{ "UT", 0 }, { "GMT", 0 },
{ "EDT", -4 * 60 * 60 }, { "EST", -5 * 60 * 60 },
{ "CDT", -5 * 60 * 60 }, { "CST", -6 * 60 * 60 },
{ "MDT", -6 * 60 * 60 }, { "MST", -7 * 60 * 60 },
{ "PDT", -7 * 60 * 60 }, { "PST", -8 * 60 * 60 },
};
/*
** Time parsing macros.
*/
/* Whether a given year is a leap year. */
#define ISLEAP(year) \
(((year) % 4) == 0 && (((year) % 100) != 0 || ((year) % 400) == 0))
/*
** RFC 2822 date parsing rules.
*/
/* The data structure to store a rule. The interpretation of the other fields
is based on the value of type. For NUMBER, read between min and max
characters and convert to a number. For LOOKUP, look for max characters
and find that string in the provided table (with size elements). For
DELIM, just make sure that we see the character stored in delimiter. */
struct rule {
enum {
TYPE_NUMBER,
TYPE_LOOKUP,
TYPE_DELIM
} type;
char delimiter;
const char (*table)[4];
size_t size;
int min;
int max;
};
/*
** Given a time as a time_t, return the offset in seconds of the local time
** zone from UTC at that time (adding the offset to UTC time yields local
** time). If the second argument is true, the time represents the current
** time and in that circumstance we can assume that timezone/altzone are
** correct. (We can't for arbitrary times in the past.)
*/
static long
local_tz_offset(time_t date, bool current UNUSED)
{
struct tm *tm;
#if !HAVE_TM_GMTOFF
struct tm local, gmt;
long offset;
#endif
tm = localtime(&date);
#if !HAVE_TM_GMTOFF && HAVE_VAR_TIMEZONE
if (current)
return (tm->tm_isdst > 0) ? -altzone : -timezone;
#endif
#if HAVE_TM_GMTOFF
return tm->tm_gmtoff;
#else
/* We don't have any easy returnable value, so we call both localtime
and gmtime and calculate the difference. Assume that local time is
never more than 24 hours away from UTC and ignore seconds. */
local = *tm;
tm = gmtime(&date);
gmt = *tm;
offset = local.tm_yday - gmt.tm_yday;
if (offset < -1) {
/* Local time is in the next year. */
offset = 24;
} else if (offset > 1) {
/* Local time is in the previous year. */
offset = -24;
} else {
offset *= 24;
}
offset += local.tm_hour - gmt.tm_hour;
offset *= 60;
offset += local.tm_min - gmt.tm_min;
return offset * 60;
#endif /* !HAVE_TM_GMTOFF */
}
/*
** Given a time_t, a flag saying whether to use local time, a buffer, and
** the length of the buffer, write the contents of a valid RFC 2822 / RFC
** 1036 Date header into the buffer (provided it's long enough). Returns
** true on success, false if the buffer is too long. Use snprintf rather
** than strftime to be absolutely certain that locales don't result in the
** wrong output. If the time is -1, obtain and use the current time.
*/
bool
makedate(time_t date, bool local, char *buff, size_t buflen)
{
time_t realdate;
struct tm *tmp_tm;
struct tm tm;
long tz_offset;
int tz_hour_offset, tz_min_offset, tz_sign;
size_t date_length;
const char *tz_name;
/* Make sure the buffer is large enough. A complete RFC 2822 date with
spaces wherever FWS is required and the optional weekday takes:
1 2 3
1234567890123456789012345678901
Sat, 31 Aug 2002 23:45:18 +0000
31 characters, plus another character for the trailing nul. The buffer
will need to have another six characters of space to get the optional
trailing time zone comment. */
if (buflen < 32)
return false;
/* Get the current time if the provided time is -1. */
realdate = (date == (time_t) -1) ? time(NULL) : date;
/* RFC 2822 says the timezone offset is given as [+-]HHMM, so we have to
separate the offset into a sign, hours, and minutes. Dividing the
offset by 36 looks like it works, but will fail for any offset that
isn't an even number of hours, and there are half-hour timezones. */
if (local) {
tmp_tm = localtime(&realdate);
tm = *tmp_tm;
tz_offset = local_tz_offset(realdate, date == (time_t) -1);
tz_sign = (tz_offset < 0) ? -1 : 1;
tz_offset *= tz_sign;
tz_hour_offset = tz_offset / 3600;
tz_min_offset = (tz_offset % 3600) / 60;
} else {
tmp_tm = gmtime(&realdate);
tm = *tmp_tm;
tz_sign = 1;
tz_hour_offset = 0;
tz_min_offset = 0;
}
/* tz_min_offset cannot be larger than 60 (by basic mathematics). If
through some insane circumtances, tz_hour_offset would be larger,
reject the time as invalid rather than generate an invalid date. */
if (tz_hour_offset > 24)
return false;
/* Generate the actual date string, sans the trailing time zone comment
but with the day of the week and the seconds (both of which are
optional in the standard). */
snprintf(buff, buflen, "%3.3s, %d %3.3s %d %02d:%02d:%02d %c%02d%02d",
&WEEKDAY[tm.tm_wday][0], tm.tm_mday, &MONTH[tm.tm_mon][0],
1900 + tm.tm_year, tm.tm_hour, tm.tm_min, tm.tm_sec,
(tz_sign > 0) ? '+' : '-', tz_hour_offset, tz_min_offset);
date_length = strlen(buff);
/* Now, get a pointer to the time zone abbreviation, and if there is
enough room in the buffer, add it to the end of the date string as a
comment. */
if (!local) {
tz_name = "UTC";
} else {
#if HAVE_TM_ZONE
tz_name = tm.tm_zone;
#elif HAVE_VAR_TZNAME
tz_name = tzname[(tm.tm_isdst > 0) ? 1 : 0];
#else
tz_name = NULL;
#endif
}
if (tz_name != NULL && date_length + 4 + strlen(tz_name) <= buflen) {
snprintf(buff + date_length, buflen - date_length, " (%s)", tz_name);
}
return true;
}
/*
** Given a struct tm representing a calendar time in UTC, convert it to
** seconds since epoch. Returns (time_t) -1 if the time is not
** convertable. Note that this function does not canonicalize the provided
** struct tm, nor does it allow out of range values or years before 1970.
*/
static time_t
mktime_utc(const struct tm *tm)
{
time_t result = 0;
int i;
/* We do allow some ill-formed dates, but we don't do anything special
with them and our callers really shouldn't pass them to us. Do
explicitly disallow the ones that would cause invalid array accesses
or other algorithm problems. */
if (tm->tm_mon < 0 || tm->tm_mon > 11 || tm->tm_year < 70)
return (time_t) -1;
/* Convert to a time_t. */
for (i = 1970; i < tm->tm_year + 1900; i++)
result += 365 + ISLEAP(i);
for (i = 0; i < tm->tm_mon; i++)
result += MONTHDAYS[i];
if (tm->tm_mon > 1 && ISLEAP(tm->tm_year + 1900))
result++;
result = 24 * (result + tm->tm_mday - 1) + tm->tm_hour;
result = 60 * result + tm->tm_min;
result = 60 * result + tm->tm_sec;
return result;
}
/*
** Check the ranges of values in a struct tm to make sure that the date was
** well-formed. Assumes that the year has already been correctly set to
** something (but may be before 1970).
*/
static bool
valid_tm(const struct tm *tm)
{
if (tm->tm_sec > 60 || tm->tm_min > 59 || tm->tm_hour > 23)
return false;
if (tm->tm_mday < 1 || tm->tm_mon < 0 || tm->tm_mon > 11)
return false;
/* Make sure that the day isn't past the end of the month, allowing for
leap years. */
if (tm->tm_mday > MONTHDAYS[tm->tm_mon]
&& (tm->tm_mon != 1 || tm->tm_mday > 29
|| !ISLEAP(tm->tm_year + 1900)))
return false;
/* We can't handle years before 1970. */
if (tm->tm_year < 70)
return false;
return true;
}
/*
** Parse a date in the format used in NNTP commands such as NEWGROUPS and
** NEWNEWS. The first argument is a string of the form YYYYMMDD and the
** second a string of the form HHMMSS. The third argument is a boolean
** flag saying whether the date is specified in local time; if false, the
** date is assumed to be in UTC. Returns the time_t corresponding to the
** given date and time or (time_t) -1 in the event of an error.
*/
time_t
parsedate_nntp(const char *date, const char *hour, bool local)
{
const char *p;
size_t datelen;
time_t now, result;
struct tm tm;
struct tm *current;
int century;
/* Accept YYMMDD and YYYYMMDD. The first is what RFC 977 requires. The
second is what the revision of RFC 977 will require. */
datelen = strlen(date);
if ((datelen != 6 && datelen != 8) || strlen(hour) != 6)
return (time_t) -1;
for (p = date; *p; p++)
if (!CTYPE(isdigit, *p))
return (time_t) -1;
for (p = hour; *p; p++)
if (!CTYPE(isdigit, *p))
return (time_t) -1;
/* Parse the date into a struct tm, skipping over the century part of
the year, if any. We'll deal with it in a moment. */
tm.tm_isdst = -1;
p = date + datelen - 6;
tm.tm_year = (p[0] - '0') * 10 + p[1] - '0';
tm.tm_mon = (p[2] - '0') * 10 + p[3] - '0' - 1;
tm.tm_mday = (p[4] - '0') * 10 + p[5] - '0';
p = hour;
tm.tm_hour = (p[0] - '0') * 10 + p[1] - '0';
tm.tm_min = (p[2] - '0') * 10 + p[3] - '0';
tm.tm_sec = (p[4] - '0') * 10 + p[5] - '0';
/* Four-digit years are the easy case.
For two-digit years, RFC 977 says "The closest century is assumed as
part of the year (i.e., 86 specifies 1986, 30 specifies 2030, 99 is
1999, 00 is 2000)." draft-ietf-nntpext-base-10.txt simplifies this
considerably and is what we implement:
If the first two digits of the year are not specified, the year is
to be taken from the current century if YY is smaller than or equal
to the current year, otherwise the year is from the previous
century.
This implementation assumes "current year" means the last two digits
of the current year. Note that this algorithm interacts poorly with
clients with a slightly fast clock around the turn of a century, as
it may send 00 for the year when the year on the server is still xx99
and have it taken to be 99 years in the past. But 2000 has come and
gone, and by 2100 news clients *really* should have started using UTC
for everything like the new draft recommends. */
if (datelen == 8) {
tm.tm_year += (date[0] - '0') * 1000 + (date[1] - '0') * 100;
tm.tm_year -= 1900;
} else {
now = time(NULL);
current = local ? localtime(&now) : gmtime(&now);
century = current->tm_year / 100;
if (tm.tm_year > current->tm_year % 100)
century--;
tm.tm_year += century * 100;
}
/* Ensure that all of the date components are within valid ranges. */
if (!valid_tm(&tm))
return (time_t) -1;
/* tm contains the broken-down date; convert it to a time_t. mktime
assumes the supplied struct tm is in the local time zone; if given a
time in UTC, use our own routine instead. */
result = local ? mktime(&tm) : mktime_utc(&tm);
return result;
}
/*
** Skip any amount of CFWS (comments and folding whitespace), the RFC 2822
** grammar term for whitespace, CRLF pairs, and possibly nested comments that
** may contain escaped parens. We also allow simple newlines since we don't
** always deal with wire-format messages. Note that we do not attempt to
** ensure that CRLF or a newline is followed by whitespace. Returns the new
** position of the pointer.
*/
static const char *
skip_cfws(const char *p)
{
int nesting = 0;
for (; *p != '\0'; p++) {
switch (*p) {
case ' ':
case '\t':
case '\n':
break;
case '\r':
if (p[1] != '\n')
return p;
p++;
break;
case '(':
nesting++;
break;
case ')':
if (nesting == 0)
return p;
nesting--;
break;
case '\\':
if (nesting == 0 || p[1] == '\0')
return p;
p++;
break;
default:
if (nesting == 0)
return p;
break;
}
}
return p;
}
/*
** Parse a single number. Takes the parsing rule that we're applying and
** returns a pointer to the new position of the parse stream. If there
** aren't enough digits, return NULL.
*/
static const char *
parse_number(const char *p, const struct rule *rule, int *value)
{
int count;
*value = 0;
for (count = 0; *p != '\0' && count < rule->max; p++, count++) {
if (*p < '0' || *p > '9')
break;
*value = *value * 10 + (*p - '0');
}
if (count < rule->min || count > rule->max)
return NULL;
return p;
}
/*
** Parse a single string value that has to be done via table lookup. Takes
** the parsing rule that we're applying. Puts the index number of the string
** if found into the value pointerand returns the new position of the string,
** or NULL if the string could not be found in the table.
*/
static const char *
parse_lookup(const char *p, const struct rule *rule, int *value)
{
size_t i;
for (i = 0; i < rule->size; i++)
if (strncasecmp(rule->table[i], p, rule->max) == 0) {
p += rule->max;
*value = i;
return p;
}
return NULL;
}
/*
** Apply a set of date parsing rules to a string. Returns the new position
** in the parse string if this succeeds and NULL if it fails. As part of the
** parse, stores values into the value pointer in the array of rules that was
** passed in. Takes an array of rules and a count of rules in that array.
*/
static const char *
parse_by_rule(const char *p, const struct rule rules[], size_t count,
int *values)
{
size_t i;
const struct rule *rule;
for (i = 0; i < count; i++) {
rule = &rules[i];
switch (rule->type) {
case TYPE_DELIM:
if (*p != rule->delimiter)
return NULL;
p++;
break;
case TYPE_LOOKUP:
p = parse_lookup(p, rule, &values[i]);
if (p == NULL)
return NULL;
break;
case TYPE_NUMBER:
p = parse_number(p, rule, &values[i]);
if (p == NULL)
return NULL;
break;
}
p = skip_cfws(p);
}
return p;
}
/*
** Parse a legacy time zone. This uses the parsing rules in RFC 2822,
** including assigning an offset of 0 to all single-character military time
** zones due to their ambiguity in practice. Returns the new position in the
** parse stream or NULL if we failed to parse the zone.
*/
static const char *
parse_legacy_timezone(const char *p, long *offset)
{
const char *end;
size_t max, i;
for (end = p; *end != '\0' && !CTYPE(isspace, *end); end++)
;
if (end == p)
return NULL;
max = end - p;
for (i = 0; i < ARRAY_SIZE(ZONE_OFFSET); i++)
if (strncasecmp(ZONE_OFFSET[i].name, p, max) == 0) {
p += strlen(ZONE_OFFSET[i].name);
*offset = ZONE_OFFSET[i].offset;
return p;
}
if (max == 1 && CTYPE(isalpha, *p) && *p != 'J' && *p != 'j') {
*offset = 0;
return p + 1;
}
return NULL;
}
/*
** Parse an RFC 2822 date, accepting the normal and obsolete syntax. Takes a
** pointer to the beginning of the date and the length. Returns the
** translated time in seconds since epoch, or (time_t) -1 on error.
*/
time_t
parsedate_rfc2822(const char *date)
{
const char *p;
int zone_sign;
long zone_offset;
struct tm tm;
int values[8];
time_t result;
/* The basic rules. Note that we don't bother to check whether the day of
the week is accurate or not. */
static const struct rule base_rule[] = {
{ TYPE_LOOKUP, 0, WEEKDAY, 7, 3, 3 },
{ TYPE_DELIM, ',', NULL, 0, 1, 1 },
{ TYPE_NUMBER, 0, NULL, 0, 1, 2 },
{ TYPE_LOOKUP, 0, MONTH, 12, 3, 3 },
{ TYPE_NUMBER, 0, NULL, 0, 2, 4 },
{ TYPE_NUMBER, 0, NULL, 0, 2, 2 },
{ TYPE_DELIM, ':', NULL, 0, 1, 1 },
{ TYPE_NUMBER, 0, NULL, 0, 2, 2 }
};
/* Optional seconds at the end of the time. */
static const struct rule seconds_rule[] = {
{ TYPE_DELIM, ':', NULL, 0, 1, 1 },
{ TYPE_NUMBER, 0, NULL, 0, 2, 2 }
};
/* Numeric time zone. */
static const struct rule zone_rule[] = {
{ TYPE_NUMBER, 0, NULL, 0, 4, 4 }
};
/* Start with a clean slate. */
memset(&tm, 0, sizeof(struct tm));
memset(values, 0, sizeof(values));
/* Parse the base part of the date. The initial day of the week is
optional. */
p = skip_cfws(date);
if (CTYPE(isalpha, *p))
p = parse_by_rule(p, base_rule, ARRAY_SIZE(base_rule), values);
else
p = parse_by_rule(p, base_rule + 2, ARRAY_SIZE(base_rule) - 2,
values + 2);
if (p == NULL)
return (time_t) -1;
/* Stash the results into a struct tm. Values are associated with the
rule number of the same index. */
tm.tm_mday = values[2];
tm.tm_mon = values[3];
tm.tm_year = values[4];
tm.tm_hour = values[5];
tm.tm_min = values[7];
/* Parse seconds if they're present. */
if (*p == ':') {
p = parse_by_rule(p, seconds_rule, ARRAY_SIZE(seconds_rule), values);
if (p == NULL)
return (time_t) -1;
tm.tm_sec = values[1];
}
/* Time zone. Unfortunately this is weird enough that we can't use nice
parsing rules for it. */
if (*p == '-' || *p == '+') {
zone_sign = (*p == '+') ? 1 : -1;
p = parse_by_rule(p + 1, zone_rule, ARRAY_SIZE(zone_rule), values);
if (p == NULL)
return (time_t) -1;
zone_offset = ((values[0] / 100) * 60 + values[0] % 100) * 60;
zone_offset *= zone_sign;
} else {
p = parse_legacy_timezone(p, &zone_offset);
if (p == NULL)
return (time_t) -1;
}
/* Fix up the year, using the RFC 2822 rules. Remember that tm_year
stores the year - 1900. */
if (tm.tm_year < 50)
tm.tm_year += 100;
else if (tm.tm_year >= 1000)
tm.tm_year -= 1900;
/* Done parsing. Make sure there's nothing left but CFWS and range-check
our results and then convert the struct tm to seconds since epoch and
then apply the time zone offset. */
p = skip_cfws(p);
if (*p != '\0')
return (time_t) -1;
if (!valid_tm(&tm))
return (time_t) -1;
result = mktime_utc(&tm);
return (result == (time_t) -1) ? result : result - zone_offset;
}
|