1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
/* $Id: md5.c 4154 2000-10-31 16:28:53Z kondou $
**
** RSA Data Security, Inc. MD5 Message-Digest Algorithm
**
** The standard MD5 message digest routines, from RSA Data Security, Inc.
** by way of Landon Curt Noll, modified and integrated into INN by Clayton
** O'Neill and then simplified somewhat, converted to INN coding style,
** and commented by Russ Allbery.
**
** To form the message digest for a message M:
** (1) Initialize a context buffer md5_context using md5_init
** (2) Call md5_update on md5_context and M
** (3) Call md5_final on md5_context
** The message digest is now in md5_context->digest[0...15].
**
** Alternately, just call md5_hash on M, passing it a buffer of at least
** 16 bytes into which to put the digest. md5_hash does the above
** internally for you and is the most convenient interface; the interface
** described above, however, is better when all of the data to hash isn't
** available neatly in a single buffer (such as hashing data aquired a
** block at a time).
**
** For information about MD5, see RFC 1321.
**
** LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
** INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
** EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
** CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
** USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
** OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
** PERFORMANCE OF THIS SOFTWARE.
**
** Copyright (C) 1990, RSA Data Security, Inc. All rights reserved.
**
** License to copy and use this software is granted provided that it is
** identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm"
** in all material mentioning or referencing this software or this
** function.
**
** License is also granted to make and use derivative works provided that
** such works are identified as "derived from the RSA Data Security,
** Inc. MD5 Message-Digest Algorithm" in all material mentioning or
** referencing the derived work.
**
** RSA Data Security, Inc. makes no representations concerning either the
** merchantability of this software or the suitability of this software for
** any particular purpose. It is provided "as is" without express or
** implied warranty of any kind.
**
** These notices must be retained in any copies of any part of this
** documentation and/or software.
*/
/*
** The actual mathematics and cryptography are at the bottom of this file,
** as those parts should be fully debugged and very infrequently changed.
** The core of actual work is done by md5_transform. The beginning of this
** file contains the infrastructure around the mathematics.
*/
#include "config.h"
#include "clibrary.h"
#include "inn/md5.h"
/* Rotate a 32-bit value left, used by both the MD5 mathematics and by the
routine below to byteswap data on big-endian machines. */
#define ROT(X, n) (((X) << (n)) | ((X) >> (32 - (n))))
/* Almost zero fill padding, used by md5_final. The 0x80 is part of the MD5
hash algorithm, from RFC 1321 section 3.1:
Padding is performed as follows: a single "1" bit is appended to the
message, and then "0" bits are appended so that the length in bits of
the padded message becomes congruent to 448, modulo 512. In all, at
least one bit and at most 512 bits are appended.
Let the compiler zero the remainder of the array for us, guaranteed by
ISO C99 6.7.8 paragraph 21. */
static const unsigned char padding[MD5_CHUNKSIZE] = { 0x80, 0 /* 0, ... */ };
/* Internal prototypes. */
static void md5_transform(uint32_t *, const uint32_t *);
static void md5_update_block(struct md5_context *, const unsigned char *,
size_t);
/* MD5 requires that input data be treated as words in little-endian byte
order. From RFC 1321 section 2:
Similarly, a sequence of bytes can be interpreted as a sequence of
32-bit words, where each consecutive group of four bytes is interpreted
as a word with the low-order (least significant) byte given first.
Input data must therefore be byteswapped on big-endian machines, as must
the 16-byte result digest. Since we have to make a copy of the incoming
data anyway to ensure alignment for 4-byte access, we can byteswap it in
place. */
#if !WORDS_BIGENDIAN
# define decode(data) /* empty */
# define encode(data, out) memcpy((out), (data), MD5_DIGESTSIZE)
#else
/* The obvious way to do this is to pull single bytes at a time out of the
input array and build words from them; this requires three shifts and
three Boolean or operations, but it requires four memory reads per word
unless the compiler is really smart. Since we can assume four-byte
alignment for the input data, use this optimized routine from J. Touch,
USC/ISI. This requires four shifts, two ands, and two ors, but only one
memory read per word. */
#define swap(word) \
do { \
htmp = ROT((word), 16); \
ltmp = htmp >> 8; \
htmp &= 0x00ff00ff; \
ltmp &= 0x00ff00ff; \
htmp <<= 8; \
(word) = htmp | ltmp; \
} while (0)
/* We process 16 words of data (one MD5 block) of data at a time, completely
unrolling the loop manually since it should allow the compiler to take
advantage of pipelining and parallel arithmetic units. */
static void
decode(uint32_t *data)
{
uint32_t ltmp, htmp;
swap(data[ 0]); swap(data[ 1]); swap(data[ 2]); swap(data[ 3]);
swap(data[ 4]); swap(data[ 5]); swap(data[ 6]); swap(data[ 7]);
swap(data[ 8]); swap(data[ 9]); swap(data[10]); swap(data[11]);
swap(data[12]); swap(data[13]); swap(data[14]); swap(data[15]);
}
/* Used by md5_final to generate the final digest. The digest is not
guaranteed to be aligned for 4-byte access but we are allowed to be
destructive, so byteswap first and then copy the result over. */
static void
encode(uint32_t *data, unsigned char *out)
{
uint32_t ltmp, htmp;
swap(data[0]);
swap(data[1]);
swap(data[2]);
swap(data[3]);
memcpy(out, data, MD5_DIGESTSIZE);
}
#endif /* WORDS_BIGENDIAN */
/*
** That takes care of the preliminaries; now the real fun begins. The
** initialization function for a struct md5_context; set lengths to zero
** and initialize our working buffer with the magic constants (c.f. RFC
** 1321 section 3.3).
*/
void
md5_init(struct md5_context *context)
{
context->buf[0] = 0x67452301U;
context->buf[1] = 0xefcdab89U;
context->buf[2] = 0x98badcfeU;
context->buf[3] = 0x10325476U;
context->count[0] = 0;
context->count[1] = 0;
context->datalen = 0;
}
/*
** The workhorse function, called for each chunk of data. Update the
** message-digest context to account for the presence of each of the
** characters data[0 .. count - 1] in the message whose digest is being
** computed. Accepts any length of data; all whole blocks are processed
** and the remaining data is buffered for later processing by either
** another call to md5_update or by md5_final.
*/
void
md5_update(struct md5_context *context, const unsigned char *data,
size_t count)
{
unsigned int datalen = context->datalen;
unsigned int left;
size_t high_count, low_count, used;
/* Update the count of hashed bytes. The machinations here are to do
the right thing on a platform where size_t > 32 bits without causing
compiler warnings on platforms where it's 32 bits. RFC 1321 section
3.2 says:
A 64-bit representation of b (the length of the message before the
padding bits were added) is appended to the result of the previous
step. In the unlikely event that b is greater than 2^64, then only
the low-order 64 bits of b are used.
so we can just ignore the higher bits of count if size_t is larger
than 64 bits. (Think ahead!) If size_t is only 32 bits, the
compiler should kill the whole if statement as dead code. */
if (sizeof(count) > 4) {
high_count = count >> 31;
context->count[1] += (high_count >> 1) & 0xffffffffU;
}
/* Now deal with count[0]. Add in the low 32 bits of count and
increment count[1] if count[0] wraps. Isn't unsigned arithmetic
cool? */
low_count = count & 0xffffffffU;
context->count[0] += low_count;
if (context->count[0] < low_count)
context->count[1]++;
/* See if we already have some data queued. If so, try to complete a
block and then deal with it first. If the new data still doesn't
fill the buffer, add it to the buffer and return. Otherwise,
transform that block and update data and count to account for the
data we've already used. */
if (datalen > 0) {
left = MD5_CHUNKSIZE - datalen;
if (left > count) {
memcpy(context->in.byte + datalen, data, count);
context->datalen += count;
return;
} else {
memcpy(context->in.byte + datalen, data, left);
decode(context->in.word);
md5_transform(context->buf, context->in.word);
data += left;
count -= left;
context->datalen = 0;
}
}
/* If we have a block of data or more left, pass the rest off to
md5_update_block to deal with all of the full blocks available. */
if (count >= MD5_CHUNKSIZE) {
md5_update_block(context, data, count);
used = (count / MD5_CHUNKSIZE) * MD5_CHUNKSIZE;
data += used;
count -= used;
}
/* If there's anything left, buffer it until we can complete a block or
for md5_final to deal with. */
if (count > 0) {
memcpy(context->in.byte, data, count);
context->datalen = count;
}
}
/*
** Update the message-digest context to account for the presence of each of
** the characters data[0 .. count - 1] in the message whose digest is being
** computed, except that we only deal with full blocks of data. The data
** is processed one block at a time, and partial blocks at the end are
** ignored (they're dealt with by md5_update, which calls this routine.
**
** Note that we always make a copy of the input data into an array of
** 4-byte values. If our input data were guaranteed to be aligned for
** 4-byte access, we could just use the input buffer directly on
** little-endian machines, and in fact this implementation used to do that.
** However, a requirement to align isn't always easily detectable, even by
** configure (an Alpha running Tru64 will appear to allow unaligned
** accesses, but will spew errors to the terminal if you do it). On top of
** that, even when it's allowed, unaligned access is quite frequently
** slower; we're about to do four reads of each word of the input data for
** the calculations, so doing one additional copy of the data up-front is
** probably worth it.
*/
static void
md5_update_block(struct md5_context *context, const unsigned char *data,
size_t count)
{
uint32_t in[MD5_CHUNKWORDS];
/* Process data in MD5_CHUNKSIZE blocks. */
while (count >= MD5_CHUNKSIZE) {
memcpy(in, data, MD5_CHUNKSIZE);
decode(in);
md5_transform(context->buf, in);
data += MD5_CHUNKSIZE;
count -= MD5_CHUNKSIZE;
}
}
/*
** Terminates the message-digest computation, accounting for any final
** trailing data and adding the message length to the hashed data, and ends
** with the desired message digest in context->digest[0...15].
*/
void
md5_final(struct md5_context *context)
{
unsigned int pad_needed, left;
uint32_t count[2];
uint32_t *countloc;
/* Save the count before appending the padding. */
count[0] = context->count[0];
count[1] = context->count[1];
/* Pad the final block of data. RFC 1321 section 3.1:
The message is "padded" (extended) so that its length (in bits) is
congruent to 448, modulo 512. That is, the message is extended so
that it is just 64 bits shy of being a multiple of 512 bits long.
Padding is always performed, even if the length of the message is
already congruent to 448, modulo 512.
The 64 bits (two words) left are for the 64-bit count of bits
hashed. We'll need at most 64 bytes of padding; lucky that the
padding array is exactly that size! */
left = context->datalen;
pad_needed = (left < 64 - 8) ? (64 - 8 - left) : (128 - 8 - left);
md5_update(context, padding, pad_needed);
/* Append length in bits and transform. Note that we cheat slightly
here to save a few operations on big-endian machines; the algorithm
says that we should add the length, in little-endian byte order, to
the last block of data. We'd then transform it into big-endian order
on a big-endian machine. But the count is *already* in big-endian
order on a big-endian machine, so effectively we'd be byteswapping it
twice. Instead, add it to the block after doing byte swapping on the
rest.
Note that we've been counting *bytes*, but the algorithm demands the
length in *bits*, so shift things around a bit. */
decode(context->in.word);
countloc = &context->in.word[MD5_CHUNKWORDS - 2];
countloc[0] = count[0] << 3;
countloc[1] = (count[1] << 3) | (count[0] >> 29);
md5_transform(context->buf, context->in.word);
/* Recover the final digest. Whoo-hoo, we're done! */
encode(context->buf, context->digest);
}
/*
** A convenience wrapper around md5_init, md5_update, and md5_final. Takes
** a pointer to a buffer of data, the length of the data, and a pointer to
** a buffer of at least 16 bytes into which to write the message digest.
*/
void
md5_hash(const unsigned char *data, size_t length, unsigned char *digest)
{
struct md5_context context;
md5_init(&context);
md5_update(&context, data, length);
md5_final(&context);
memcpy(digest, context.digest, MD5_DIGESTSIZE);
}
/*
** Look out, here comes the math.
**
** There are no user-serviceable parts below this point unless you know
** quite a bit about MD5 or optimization of integer math. The only
** function remaining, down below, is md5_transform; the rest of this is
** setting up macros to make that function more readable.
**
** The F, G, H and I are basic MD5 functions. The following identity saves
** one boolean operation.
**
** F: (((x) & (y)) | (~(x) & (z))) == ((z) ^ ((x) & ((y) ^ (z))))
** G: (((x) & (z)) | ((y) & ~(z))) == ((y) ^ ((z) & ((x) ^ (y))))
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/*
** FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. Rotation
** is separate from addition to prevent recomputation. S?? are the shift
** values for each round.
*/
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define FF(a, b, c, d, x, s, ac) \
{ \
(a) += F((b), (c), (d)) + (x) + (uint32_t) (ac); \
(a) = ROT((a), (s)); \
(a) += (b); \
}
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define GG(a, b, c, d, x, s, ac) \
{ \
(a) += G((b), (c), (d)) + (x) + (uint32_t) (ac); \
(a) = ROT((a), (s)); \
(a) += (b); \
}
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define HH(a, b, c, d, x, s, ac) \
{ \
(a) += H((b), (c), (d)) + (x) + (uint32_t) (ac); \
(a) = ROT((a), (s)); \
(a) += (b); \
}
#define S41 6
#define S42 10
#define S43 15
#define S44 21
#define II(a, b, c, d, x, s, ac) \
{ \
(a) += I((b), (c), (d)) + (x) + (uint32_t) (ac); \
(a) = ROT((a), (s)); \
(a) += (b); \
}
/*
** Basic MD5 step. Transforms buf based on in.
*/
static void
md5_transform(uint32_t *buf, const uint32_t *in)
{
uint32_t a = buf[0];
uint32_t b = buf[1];
uint32_t c = buf[2];
uint32_t d = buf[3];
/* Round 1 */
FF(a, b, c, d, in[ 0], S11, 3614090360UL); /* 1 */
FF(d, a, b, c, in[ 1], S12, 3905402710UL); /* 2 */
FF(c, d, a, b, in[ 2], S13, 606105819UL); /* 3 */
FF(b, c, d, a, in[ 3], S14, 3250441966UL); /* 4 */
FF(a, b, c, d, in[ 4], S11, 4118548399UL); /* 5 */
FF(d, a, b, c, in[ 5], S12, 1200080426UL); /* 6 */
FF(c, d, a, b, in[ 6], S13, 2821735955UL); /* 7 */
FF(b, c, d, a, in[ 7], S14, 4249261313UL); /* 8 */
FF(a, b, c, d, in[ 8], S11, 1770035416UL); /* 9 */
FF(d, a, b, c, in[ 9], S12, 2336552879UL); /* 10 */
FF(c, d, a, b, in[10], S13, 4294925233UL); /* 11 */
FF(b, c, d, a, in[11], S14, 2304563134UL); /* 12 */
FF(a, b, c, d, in[12], S11, 1804603682UL); /* 13 */
FF(d, a, b, c, in[13], S12, 4254626195UL); /* 14 */
FF(c, d, a, b, in[14], S13, 2792965006UL); /* 15 */
FF(b, c, d, a, in[15], S14, 1236535329UL); /* 16 */
/* Round 2 */
GG(a, b, c, d, in[ 1], S21, 4129170786UL); /* 17 */
GG(d, a, b, c, in[ 6], S22, 3225465664UL); /* 18 */
GG(c, d, a, b, in[11], S23, 643717713UL); /* 19 */
GG(b, c, d, a, in[ 0], S24, 3921069994UL); /* 20 */
GG(a, b, c, d, in[ 5], S21, 3593408605UL); /* 21 */
GG(d, a, b, c, in[10], S22, 38016083UL); /* 22 */
GG(c, d, a, b, in[15], S23, 3634488961UL); /* 23 */
GG(b, c, d, a, in[ 4], S24, 3889429448UL); /* 24 */
GG(a, b, c, d, in[ 9], S21, 568446438UL); /* 25 */
GG(d, a, b, c, in[14], S22, 3275163606UL); /* 26 */
GG(c, d, a, b, in[ 3], S23, 4107603335UL); /* 27 */
GG(b, c, d, a, in[ 8], S24, 1163531501UL); /* 28 */
GG(a, b, c, d, in[13], S21, 2850285829UL); /* 29 */
GG(d, a, b, c, in[ 2], S22, 4243563512UL); /* 30 */
GG(c, d, a, b, in[ 7], S23, 1735328473UL); /* 31 */
GG(b, c, d, a, in[12], S24, 2368359562UL); /* 32 */
/* Round 3 */
HH(a, b, c, d, in[ 5], S31, 4294588738UL); /* 33 */
HH(d, a, b, c, in[ 8], S32, 2272392833UL); /* 34 */
HH(c, d, a, b, in[11], S33, 1839030562UL); /* 35 */
HH(b, c, d, a, in[14], S34, 4259657740UL); /* 36 */
HH(a, b, c, d, in[ 1], S31, 2763975236UL); /* 37 */
HH(d, a, b, c, in[ 4], S32, 1272893353UL); /* 38 */
HH(c, d, a, b, in[ 7], S33, 4139469664UL); /* 39 */
HH(b, c, d, a, in[10], S34, 3200236656UL); /* 40 */
HH(a, b, c, d, in[13], S31, 681279174UL); /* 41 */
HH(d, a, b, c, in[ 0], S32, 3936430074UL); /* 42 */
HH(c, d, a, b, in[ 3], S33, 3572445317UL); /* 43 */
HH(b, c, d, a, in[ 6], S34, 76029189UL); /* 44 */
HH(a, b, c, d, in[ 9], S31, 3654602809UL); /* 45 */
HH(d, a, b, c, in[12], S32, 3873151461UL); /* 46 */
HH(c, d, a, b, in[15], S33, 530742520UL); /* 47 */
HH(b, c, d, a, in[ 2], S34, 3299628645UL); /* 48 */
/* Round 4 */
II(a, b, c, d, in[ 0], S41, 4096336452UL); /* 49 */
II(d, a, b, c, in[ 7], S42, 1126891415UL); /* 50 */
II(c, d, a, b, in[14], S43, 2878612391UL); /* 51 */
II(b, c, d, a, in[ 5], S44, 4237533241UL); /* 52 */
II(a, b, c, d, in[12], S41, 1700485571UL); /* 53 */
II(d, a, b, c, in[ 3], S42, 2399980690UL); /* 54 */
II(c, d, a, b, in[10], S43, 4293915773UL); /* 55 */
II(b, c, d, a, in[ 1], S44, 2240044497UL); /* 56 */
II(a, b, c, d, in[ 8], S41, 1873313359UL); /* 57 */
II(d, a, b, c, in[15], S42, 4264355552UL); /* 58 */
II(c, d, a, b, in[ 6], S43, 2734768916UL); /* 59 */
II(b, c, d, a, in[13], S44, 1309151649UL); /* 60 */
II(a, b, c, d, in[ 4], S41, 4149444226UL); /* 61 */
II(d, a, b, c, in[11], S42, 3174756917UL); /* 62 */
II(c, d, a, b, in[ 2], S43, 718787259UL); /* 63 */
II(b, c, d, a, in[ 9], S44, 3951481745UL); /* 64 */
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
|