File: hashtab.c

package info (click to toggle)
inn2 2.6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,504 kB
  • sloc: ansic: 96,864; sh: 15,770; perl: 13,276; makefile: 3,700; yacc: 837; python: 309; lex: 262
file content (470 lines) | stat: -rw-r--r-- 13,770 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*  $Id: hashtab.c 10153 2017-06-05 12:28:01Z iulius $
**
**  Generic hash table implementation.
**
**  Written by Russ Allbery <eagle@eyrie.org>
**  This work is hereby placed in the public domain by its author.
**
**  This is a generic hash table implementation with linear probing.  It
**  takes a comparison function and a hashing function and stores void *.
**
**  Included for the use of callers is the hash function LOOKUP2 by Bob
**  Jenkins, taken from <http://burtleburtle.net/bob/hash/>; see that web
**  page for analysis and performance comparisons.  The performance of this
**  hash is slightly worse than the standard sum and modulus hash function
**  seen in many places but it produces fewer collisions.
*/

#include "config.h"
#include "clibrary.h"
#include "inn/hashtab.h"
#include "inn/libinn.h"

/* Magic values for empty and deleted hash table slots. */
#define HASH_EMPTY      ((void *) 0)
#define HASH_DELETED    ((void *) 1)

struct hash {
    size_t size;                /* Allocated size. */
    size_t mask;                /* Used to resolve a hash to an index. */
    size_t nelements;           /* Total elements, including deleted. */
    size_t ndeleted;            /* Number of deleted elements. */

    unsigned long searches;     /* Count of lookups (for debugging). */
    unsigned long collisions;   /* Count of collisions (for debugging). */
    unsigned long expansions;   /* Count of hash resizes needed. */

    hash_func hash;             /* Return hash of a key. */
    hash_key_func key;          /* Given an element, returns its key. */
    hash_equal_func equal;      /* Whether a key matches an element. */
    hash_delete_func delete;    /* Called when a hash element is deleted. */

    void **table;               /* The actual elements. */
};


/*
**  Given a target table size, return the nearest power of two that's
**  greater than or equal to that size, with a minimum size of four.  The
**  minimum must be at least four to ensure that there is always at least
**  one empty slot in the table given hash_find_slot's resizing of the table
**  if it as least 75% full.  Otherwise, it would be possible for
**  hash_find_slot to go into an infinite loop.
*/
static size_t
hash_size(size_t target)
{
    int n;
    size_t size;

    if (target == 0) {
        return 4;
    }
    size = target - 1;
    for (n = 0; size > 0; n++)
        size >>= 1;
    size = 1 << n;
    return (size < 4) ? 4 : size;
}


/*
**  Create a new hash table.  The given size is rounded up to the nearest
**  power of two for speed reasons (it greatly simplifies the use of the
**  hash function).
*/
struct hash *
hash_create(size_t size, hash_func hash_f, hash_key_func key_f,
            hash_equal_func equal_f, hash_delete_func delete_f)
{
    struct hash *hash;

    hash = xcalloc(1, sizeof(struct hash));
    hash->hash = hash_f;
    hash->key = key_f;
    hash->equal = equal_f;
    hash->delete = delete_f;
    hash->size = hash_size(size);
    hash->mask = hash->size - 1;
    hash->table = xcalloc(hash->size, sizeof(void *));
    return hash;
}


/*
**  Free a hash and all resources used by it, and call the delete function
**  on every element.
*/
void
hash_free(struct hash *hash)
{
    size_t i;
    void *entry;

    for (i = 0; i < hash->size; i++) {
        entry = hash->table[i];
        if (entry != HASH_EMPTY && entry != HASH_DELETED)
            (*hash->delete)(entry);
    }
    free(hash->table);
    free(hash);
}


/*
**  Internal search function used by hash_expand.  This is an optimized
**  version of hash_find_slot that returns a pointer to the first empty
**  slot, not trying to call the equality function on non-empty slots and
**  assuming there are no HASH_DELETED slots.
*/
static void **
hash_find_empty(struct hash *hash, const void *key)
{
    size_t slot;

    slot = (*hash->hash)(key) & hash->mask;
    while (1) {
        if (hash->table[slot] == HASH_EMPTY)
            return &hash->table[slot];

        slot++;
        if (slot >= hash->size)
            slot -= hash->size;
    }
}


/*
**  Expand the hash table to be approximately 50% empty based on the number
**  of elements in the hash.  This is done by allocating a new table and
**  then calling hash_find_empty for each element in the previous table,
**  recovering the key by calling hash->key on the element.
*/
static void
hash_expand(struct hash *hash)
{
    void **old, **slot;
    size_t i, size;

    old = hash->table;
    size = hash->size;
    hash->size = hash_size((hash->nelements - hash->ndeleted) * 2);
    hash->mask = hash->size - 1;
    hash->table = xcalloc(hash->size, sizeof(void *));

    hash->nelements = 0;
    hash->ndeleted = 0;
    for (i = 0; i < size; i++)
        if (old[i] != HASH_EMPTY && old[i] != HASH_DELETED) {
            slot = hash_find_empty(hash, (*hash->key)(old[i]));
            *slot = old[i];
            hash->nelements++;
        }

    hash->expansions++;
    free(old);
}


/*
**  Find a slot in the hash for a given key.  This is used both for
**  inserting and deleting elements from the hash, as well as looking up
**  entries.  Returns a pointer to the slot.  If insert is true, return the
**  first empty or deleted slot.  If insert is false, return NULL if the
**  element could not be found.
**
**  This function assumes that there is at least one empty slot in the
**  hash; otherwise, it can loop infinitely.  It attempts to ensure this by
**  always expanding the hash if it is at least 75% full; this will ensure
**  that property for any hash size of 4 or higher.
*/
static void **
hash_find_slot(struct hash *hash, const void *key, bool insert)
{
    void **deleted_slot = NULL;
    void *entry;
    size_t slot;

    if (insert && hash->nelements * 4 >= hash->size * 3)
        hash_expand(hash);

    hash->searches++;

    slot = (*hash->hash)(key) & hash->mask;
    while (1) {
        entry = hash->table[slot];
        if (entry == HASH_EMPTY) {
            if (!insert)
                return NULL;

            if (deleted_slot != NULL) {
                *deleted_slot = HASH_EMPTY;
                hash->ndeleted--;
                return deleted_slot;
            }
            hash->nelements++;
            return &hash->table[slot];
        } else if (entry == HASH_DELETED) {
            if (insert)
                deleted_slot = &hash->table[slot];
        } else if ((*hash->equal)(key, entry)) {
            return &hash->table[slot];
        }

        hash->collisions++;
        slot++;
        if (slot >= hash->size)
            slot -= hash->size;
    }
}


/*
**  Given a key, return the entry corresponding to that key or NULL if that
**  key isn't present in the hash table.
*/
void *
hash_lookup(struct hash *hash, const void *key)
{
    void **slot;

    slot = hash_find_slot(hash, key, false);
    return (slot == NULL) ? NULL : *slot;
}


/*
**  Insert a new key/value pair into the hash, returning true if the
**  insertion was successful and false if there is already a value in the
**  hash with that key.
*/
bool
hash_insert(struct hash *hash, const void *key, void *datum)
{
    void **slot;

    slot = hash_find_slot(hash, key, true);
    if (*slot != HASH_EMPTY)
        return false;
    *slot = datum;
    return true;
}


/*
**  Replace an existing hash value with a new data value, calling the delete
**  function for the old data.  Returns true if the replacement was
**  successful or false (without changing the hash) if the key whose value
**  should be replaced was not found in the hash.
*/
bool
hash_replace(struct hash *hash, const void *key, void *datum)
{
    void **slot;

    slot = hash_find_slot(hash, key, false);
    if (slot == NULL)
        return false;
    (*hash->delete)(*slot);
    *slot = datum;
    return true;
}


/*
**  Delete a key out of the hash.  Returns true if the deletion was
**  successful, false if the key could not be found in the hash.
*/
bool
hash_delete(struct hash *hash, const void *key)
{
    bool result;

    result = hash_replace(hash, key, HASH_DELETED);
    if (result)
        hash->ndeleted++;
    return result;
}


/*
**  For each element in the hash table, call the provided function, passing
**  it the element and the opaque token that's passed to this function.
*/
void
hash_traverse(struct hash *hash, hash_traverse_func callback, void *data)
{
    size_t i;
    void *entry;

    for (i = 0; i < hash->size; i++) {
        entry = hash->table[i];
        if (entry != HASH_EMPTY && entry != HASH_DELETED)
            (*callback)(entry, data);
    }
}


/*
**  Returns a count of undeleted elements in the hash.
*/
unsigned long
hash_count(struct hash *hash)
{
    return hash->nelements - hash->ndeleted;
}


/*
**  Accessor functions for the debugging statistics.
*/
unsigned long
hash_searches(struct hash *hash)
{
    return hash->searches;
}

unsigned long
hash_collisions(struct hash *hash)
{
    return hash->collisions;
}

unsigned long
hash_expansions(struct hash *hash)
{
    return hash->expansions;
}


/*
**  Mix three 32-bit values reversibly.  This is the internal mixing
**  function for the hash function.
**
**  For every delta with one or two bit set, and the deltas of all three
**  high bits or all three low bits, whether the original value of a,b,c
**  is almost all zero or is uniformly distributed,
**
**   * If mix() is run forward or backward, at least 32 bits in a,b,c
**     have at least 1/4 probability of changing.
**
**   * If mix() is run forward, every bit of c will change between 1/3 and
**     2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
**
**  mix() takes 36 machine instructions, but only 18 cycles on a superscalar
**  machine (like a Pentium or a Sparc).  No faster mixer seems to work,
**  that's the result of my brute-force search.  There were about 2^68
**  hashes to choose from.  I (Bob Jenkins) only tested about a billion of
**  those.
*/
#define MIX(a, b, c)                                    \
    {                                                   \
        (a) -= (b); (a) -= (c); (a) ^= ((c) >> 13);     \
        (b) -= (c); (b) -= (a); (b) ^= ((a) << 8);      \
        (c) -= (a); (c) -= (b); (c) ^= ((b) >> 13);     \
        (a) -= (b); (a) -= (c); (a) ^= ((c) >> 12);     \
        (b) -= (c); (b) -= (a); (b) ^= ((a) << 16);     \
        (c) -= (a); (c) -= (b); (c) ^= ((b) >> 5);      \
        (a) -= (b); (a) -= (c); (a) ^= ((c) >> 3);      \
        (b) -= (c); (b) -= (a); (b) ^= ((a) << 10);     \
        (c) -= (a); (c) -= (b); (c) ^= ((b) >> 15);     \
    }


/*
**  Hash a variable-length key into a 32-bit value.
**
**  Takes byte sequence to hash and returns a 32-bit value.  A partial
**  result can be passed as the third parameter so that large amounts of
**  data can be hashed by subsequent calls, passing in the result of the
**  previous call each time.  Every bit of the key affects every bit of the
**  return value.  Every 1-bit and 2-bit delta achieves avalanche.  About
**  (36 + 6n) instructions.
**
**  The best hash table sizes are powers of 2.  There is no need to mod with
**  a prime (mod is sooo slow!).  If you need less than 32 bits, use a
**  bitmask.  For example, if you need only 10 bits, do:
**
**      h = h & ((1 << 10) - 1);
**
**  In which case, the hash table should have 2^10 elements.
**
**  Based on code by Bob Jenkins <bob_jenkins@burtleburtle.net>, originally
**  written in 1996.  The original license was:
**
**      By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use
**      this code any way you wish, private, educational, or commercial.
**      It's free.
**
**  See <http://burlteburtle.net/bob/hash/evahash.html> for discussion of
**  this hash function.  Use for hash table lookup, or anything where one
**  collision in 2^32 is acceptable.  Do NOT use for cryptographic purposes.
*/
unsigned long
hash_lookup2(const char *key, size_t length, unsigned long partial)
{
    uint32_t a, b, c, len;

    /* Set up the internal state.  a and b are initialized to a golden
       ratio, an arbitrary value intended to avoid mapping all zeroes to all
       zeroes. */
    len = length;
    a = b = 0x9e3779b9;
    c = partial;

#define S0(c)   ((uint32_t)(c))
#define S1(c)   ((uint32_t)(c) << 8)
#define S2(c)   ((uint32_t)(c) << 16)
#define S3(c)   ((uint32_t)(c) << 24)

    /* Handle most of the key. */
    while (len >= 12) {
        a += S0(key[0]) + S1(key[1]) + S2(key[2])  + S3(key[3]);
        b += S0(key[4]) + S1(key[5]) + S2(key[6])  + S3(key[7]);
        c += S0(key[8]) + S1(key[9]) + S2(key[10]) + S3(key[11]);
        MIX(a, b, c);
        key += 12;
        len -= 12;
   }

    /* Handle the last 11 bytes.  All of the cases fall through. */
    c += length;
    switch (len) {
    case 11: c += S3(key[10]);
             /* fallthrough */
    case 10: c += S2(key[9]);
             /* fallthrough */
    case  9: c += S1(key[8]);
             /* The first byte of c is reserved for the length. */
             /* fallthrough */
    case  8: b += S3(key[7]);
             /* fallthrough */
    case  7: b += S2(key[6]);
             /* fallthrough */
    case  6: b += S1(key[5]);
             /* fallthrough */
    case  5: b += S0(key[4]);
             /* fallthrough */
    case  4: a += S3(key[3]);
             /* fallthrough */
    case  3: a += S2(key[2]);
             /* fallthrough */
    case  2: a += S1(key[1]);
             /* fallthrough */
    case  1: a += S0(key[0]);
             /* case 0: nothing left to add. */
    }
    MIX(a, b, c);
    return c;
}


/*
**  A hash function for nul-terminated strings using hash_lookup2, suitable
**  for passing to hash_create.
*/
unsigned long
hash_string(const void *key)
{
    return hash_lookup2(key, strlen(key), 0);
}