1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
# -*- coding: utf-8 -*-
# input-remapper - GUI for device specific keyboard mappings
# Copyright (C) 2025 sezanzeb <b8x45ygc9@mozmail.com>
#
# This file is part of input-remapper.
#
# input-remapper is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# input-remapper is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with input-remapper. If not, see <https://www.gnu.org/licenses/>.
import asyncio
from typing import Tuple, Dict, Optional
import evdev
from evdev.ecodes import (
EV_ABS,
EV_REL,
REL_WHEEL,
REL_HWHEEL,
REL_HWHEEL_HI_RES,
REL_WHEEL_HI_RES,
)
from inputremapper import exceptions
from inputremapper.configs.input_config import InputCombination, InputConfig
from inputremapper.configs.mapping import (
Mapping,
WHEEL_SCALING,
WHEEL_HI_RES_SCALING,
REL_XY_SCALING,
DEFAULT_REL_RATE,
)
from inputremapper.injection.global_uinputs import GlobalUInputs
from inputremapper.injection.mapping_handlers.axis_transform import Transformation
from inputremapper.injection.mapping_handlers.mapping_handler import (
MappingHandler,
HandlerEnums,
InputEventHandler,
)
from inputremapper.input_event import InputEvent, EventActions
from inputremapper.logging.logger import logger
class RelToAbsHandler(MappingHandler):
"""Handler which transforms EV_REL to EV_ABS events.
High EV_REL input results in high EV_ABS output.
If no new EV_REL events are seen, the EV_ABS output is set to 0 after
release_timeout.
"""
_map_axis: InputConfig # InputConfig for the relative movement we map
_output_axis: Tuple[int, int] # the (type, code) of the output axis
_transform: Transformation
_target_absinfo: evdev.AbsInfo
# infinite loop which centers the output when input stops
_recenter_loop: Optional[asyncio.Task]
_moving: asyncio.Event # event to notify the _recenter_loop
_previous_event: Optional[InputEvent]
_observed_rate: float # input events per second
def __init__(
self,
combination: InputCombination,
mapping: Mapping,
global_uinputs: GlobalUInputs,
**_,
) -> None:
super().__init__(combination, mapping, global_uinputs)
# find the input event we are supposed to map. If the input combination is
# BTN_A + REL_X + BTN_B, then use the value of REL_X for the transformation
assert (map_axis := combination.find_analog_input_config(type_=EV_REL))
self._map_axis = map_axis
assert mapping.output_code is not None
assert mapping.output_type == EV_ABS
self._output_axis = (mapping.output_type, mapping.output_code)
target_uinput = global_uinputs.get_uinput(mapping.target_uinput)
assert target_uinput is not None
abs_capabilities = target_uinput.capabilities(absinfo=True)[EV_ABS]
self._target_absinfo = dict(abs_capabilities)[mapping.output_code]
max_ = self._get_default_cutoff()
self._transform = Transformation(
min_=-max(1, int(max_)),
max_=max(1, int(max_)),
deadzone=mapping.deadzone,
gain=mapping.gain,
expo=mapping.expo,
)
self._moving = asyncio.Event()
self._recenter_loop = None
self._previous_event = None
self._observed_rate = DEFAULT_REL_RATE
def __str__(self):
return f"RelToAbsHandler for {self._map_axis}"
def __repr__(self):
return f"<{str(self)} at {hex(id(self))}>"
@property
def child(self): # used for logging
return (
f"maps to: {self.mapping.get_output_name_constant()} "
f"{self.mapping.get_output_type_code()} at "
f"{self.mapping.target_uinput}"
)
def _observe_rate(self, event: InputEvent):
"""Watch incoming events and remember how many events appear per second."""
if self._previous_event is not None:
delta_time = event.timestamp() - self._previous_event.timestamp()
if delta_time == 0:
logger.error("Observed two events with the same timestamp")
return
rate = 1 / delta_time
# mice seem to have a constant rate. wheel events are jaggy and the
# rate depends on how fast it is turned.
if rate > self._observed_rate:
logger.debug("Updating rate to %s", rate)
self._observed_rate = rate
self._calculate_cutoff()
self._previous_event = event
def _get_default_cutoff(self):
"""Get the cutoff value assuming the default input rate."""
if self._map_axis.code in [REL_WHEEL, REL_HWHEEL]:
return self.mapping.rel_to_abs_input_cutoff * WHEEL_SCALING
if self._map_axis.code in [REL_WHEEL_HI_RES, REL_HWHEEL_HI_RES]:
return self.mapping.rel_to_abs_input_cutoff * WHEEL_HI_RES_SCALING
return self.mapping.rel_to_abs_input_cutoff * REL_XY_SCALING
def _calculate_cutoff(self):
"""Correct the default cutoff with the observed input rate, and set it."""
# Mice that have very high input rates report low values at the same time.
# If the rate is high, use a lower cutoff-value. If the rate is low, use a
# higher cutoff-value.
cutoff = self._get_default_cutoff()
cutoff *= DEFAULT_REL_RATE / self._observed_rate
self._transform.set_range(-max(1, int(cutoff)), max(1, int(cutoff)))
def notify(
self,
event: InputEvent,
source: evdev.InputDevice,
suppress: bool = False,
) -> bool:
self._observe_rate(event)
if event.input_match_hash != self._map_axis.input_match_hash:
return False
if EventActions.recenter in event.actions:
if self._recenter_loop:
self._recenter_loop.cancel()
self._recenter()
return True
if not self._recenter_loop or self._recenter_loop.cancelled():
self._recenter_loop = asyncio.create_task(self._create_recenter_loop())
self._moving.set() # notify the _recenter_loop
try:
self._write(self._scale_to_target(self._transform(event.value)))
return True
except (exceptions.UinputNotAvailable, exceptions.EventNotHandled):
return False
def reset(self) -> None:
if self._recenter_loop:
self._recenter_loop.cancel()
self._recenter()
def _recenter(self) -> None:
"""Recenter the output."""
self._write(self._scale_to_target(0))
async def _create_recenter_loop(self) -> None:
"""Coroutine which waits for the input to start moving,
then waits until the input stops moving, centers the output and repeat.
Runs forever.
"""
while True:
await self._moving.wait() # input moving started
while (
await asyncio.wait(
(asyncio.create_task(self._moving.wait()),),
timeout=self.mapping.release_timeout,
)
)[0]:
self._moving.clear() # still moving
self._recenter() # input moving stopped
def _scale_to_target(self, x: float) -> int:
"""Scales a x value between -1 and 1 to an integer between
target_absinfo.min and target_absinfo.max
input values above 1 or below -1 are clamped to the extreme values
"""
factor = (self._target_absinfo.max - self._target_absinfo.min) / 2
offset = self._target_absinfo.min + factor
y = factor * x + offset
if y > offset:
return int(min(self._target_absinfo.max, y))
else:
return int(max(self._target_absinfo.min, y))
def _write(self, value: int) -> None:
"""Inject."""
try:
self.global_uinputs.write(
(*self._output_axis, value),
self.mapping.target_uinput,
)
except OverflowError:
# screwed up the calculation of the event value
logger.error("OverflowError (%s, %s, %s)", *self._output_axis, value)
def needs_wrapping(self) -> bool:
return len(self.input_configs) > 1
def set_sub_handler(self, handler: InputEventHandler) -> None:
assert False # cannot have a sub-handler
def wrap_with(self) -> Dict[InputCombination, HandlerEnums]:
if self.needs_wrapping():
return {InputCombination(self.input_configs): HandlerEnums.axisswitch}
return {}
|