File: test_axis_transformation.py

package info (click to toggle)
input-remapper 2.1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,856 kB
  • sloc: python: 27,277; sh: 191; xml: 33; makefile: 3
file content (209 lines) | stat: -rw-r--r-- 7,595 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# input-remapper - GUI for device specific keyboard mappings
# Copyright (C) 2025 sezanzeb <b8x45ygc9@mozmail.com>
#
# This file is part of input-remapper.
#
# input-remapper is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# input-remapper is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with input-remapper.  If not, see <https://www.gnu.org/licenses/>.

import dataclasses
import functools
import itertools
import unittest
from typing import Iterable, List

from inputremapper.injection.mapping_handlers.axis_transform import Transformation
from tests.lib.test_setup import test_setup


@test_setup
class TestAxisTransformation(unittest.TestCase):
    @dataclasses.dataclass
    class InitArgs:
        max_: int
        min_: int
        deadzone: float
        gain: float
        expo: float

        def values(self):
            return self.__dict__.values()

    def get_init_args(
        self,
        max_=(255, 1000, 2**15),
        min_=(50, 0, -255),
        deadzone=(0, 0.5),
        gain=(0.5, 1, 2),
        expo=(-0.9, 0, 0.3),
    ) -> Iterable[InitArgs]:
        for args in itertools.product(max_, min_, deadzone, gain, expo):
            yield self.InitArgs(*args)

    @staticmethod
    def scale_to_range(min_, max_, x=(-1, -0.2, 0, 0.6, 1)) -> List[float]:
        """Scale values between -1 and 1 up, such that they are between min and max."""
        half_range = (max_ - min_) / 2
        return [float_x * half_range + min_ + half_range for float_x in x]

    def test_scale_to_range(self):
        """Make sure scale_to_range will actually return the min and max values
        (avoid "off by one" errors)"""
        max_ = (255, 1000, 2**15)
        min_ = (50, 0, -255)

        for x1, x2 in itertools.product(min_, max_):
            scaled = self.scale_to_range(x1, x2, (-1, 1))
            self.assertEqual(scaled, [x1, x2])

    def test_expo_symmetry(self):
        """Test that the transformation is symmetric for expo parameter
        x = f(g(x)), if  f._expo == - g._expo

        with the following constraints:
        min = -1, max = 1
        gain = 1
        deadzone = 0

        we can remove the constraints for min, max and gain,
        by scaling the values appropriately after each transformation
        """

        for init_args in self.get_init_args(deadzone=(0,)):
            f = Transformation(*init_args.values())
            init_args.expo = -init_args.expo
            g = Transformation(*init_args.values())

            scale = functools.partial(
                self.scale_to_range,
                init_args.min_,
                init_args.max_,
            )
            for x in scale():
                y1 = g(x)
                y1 = y1 / init_args.gain  # remove the gain
                y1 = scale((y1,))[0]  # remove the min/max constraint

                y2 = f(y1)
                y2 = y2 / init_args.gain  # remove the gain
                y2 = scale((y2,))[0]  # remove the min/max constraint
                self.assertAlmostEqual(x, y2, msg=f"test expo symmetry for {init_args}")

    def test_origin_symmetry(self):
        """Test that the transformation is symmetric to the origin_hash
        f(x) = - f(-x)
        within the constraints: min = -max
        """

        for init_args in self.get_init_args():
            init_args.min_ = -init_args.max_
            f = Transformation(*init_args.values())
            for x in self.scale_to_range(init_args.min_, init_args.max_):
                self.assertAlmostEqual(
                    f(x),
                    -f(-x),
                    msg=f"test origin_hash symmetry at {x=} for {init_args}",
                )

    def test_gain(self):
        """Test that f(max) = gain and f(min) = -gain."""
        for init_args in self.get_init_args():
            f = Transformation(*init_args.values())
            self.assertAlmostEqual(
                f(init_args.max_),
                init_args.gain,
                msg=f"test gain for {init_args}",
            )
            self.assertAlmostEqual(
                f(init_args.min_),
                -init_args.gain,
                msg=f"test gain for {init_args}",
            )

    def test_deadzone(self):
        """Test the Transfomation returns exactly 0 in the range of the deadzone."""

        for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
            f = Transformation(*init_args.values())
            for x in self.scale_to_range(
                init_args.min_,
                init_args.max_,
                x=(
                    init_args.deadzone * 0.999,
                    -init_args.deadzone * 0.999,
                    0.3 * init_args.deadzone,
                    0,
                ),
            ):
                self.assertEqual(f(x), 0, msg=f"test deadzone at {x=} for {init_args}")

    def test_continuity_near_deadzone(self):
        """Test that the Transfomation is continues (no sudden jump) next to the
        deadzone"""

        for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
            f = Transformation(*init_args.values())
            scale = functools.partial(
                self.scale_to_range,
                init_args.min_,
                init_args.max_,
            )
            x = (
                init_args.deadzone * 1.00001,
                init_args.deadzone * 1.001,
                -init_args.deadzone * 1.00001,
                -init_args.deadzone * 1.001,
            )
            scaled_x = scale(x=x)

            p1 = (x[0], f(scaled_x[0]))  # first point right of deadzone
            p2 = (x[1], f(scaled_x[1]))  # second point right of deadzone

            # calculate a linear function y = m * x + b from p1 and p2
            m = (p1[1] - p2[1]) / (p1[0] - p2[0])
            b = p1[1] - m * p1[0]

            # the zero intersection of that function must be close to the
            # edge of the deadzone
            self.assertAlmostEqual(
                -b / m,
                init_args.deadzone,
                places=5,
                msg=f"test continuity at {init_args.deadzone} for {init_args}",
            )

            # same thing on the other side
            p1 = (x[2], f(scaled_x[2]))
            p2 = (x[3], f(scaled_x[3]))
            m = (p1[1] - p2[1]) / (p1[0] - p2[0])
            b = p1[1] - m * p1[0]
            self.assertAlmostEqual(
                -b / m,
                -init_args.deadzone,
                places=5,
                msg=f"test continuity at {- init_args.deadzone} for {init_args}",
            )

    def test_expo_out_of_range(self):
        f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=1.3)
        self.assertRaises(ValueError, f, 0)
        f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=-1.3)
        self.assertRaises(ValueError, f, 0)

    def test_returns_one_for_range_between_minus_and_plus_one(self):
        for init_args in self.get_init_args(max_=(1,), min_=(-1,), gain=(1,)):
            f = Transformation(*init_args.values())
            self.assertEqual(f(1), 1)
            self.assertEqual(f(-1), -1)