1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# input-remapper - GUI for device specific keyboard mappings
# Copyright (C) 2025 sezanzeb <b8x45ygc9@mozmail.com>
#
# This file is part of input-remapper.
#
# input-remapper is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# input-remapper is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with input-remapper. If not, see <https://www.gnu.org/licenses/>.
import dataclasses
import functools
import itertools
import unittest
from typing import Iterable, List
from inputremapper.injection.mapping_handlers.axis_transform import Transformation
from tests.lib.test_setup import test_setup
@test_setup
class TestAxisTransformation(unittest.TestCase):
@dataclasses.dataclass
class InitArgs:
max_: int
min_: int
deadzone: float
gain: float
expo: float
def values(self):
return self.__dict__.values()
def get_init_args(
self,
max_=(255, 1000, 2**15),
min_=(50, 0, -255),
deadzone=(0, 0.5),
gain=(0.5, 1, 2),
expo=(-0.9, 0, 0.3),
) -> Iterable[InitArgs]:
for args in itertools.product(max_, min_, deadzone, gain, expo):
yield self.InitArgs(*args)
@staticmethod
def scale_to_range(min_, max_, x=(-1, -0.2, 0, 0.6, 1)) -> List[float]:
"""Scale values between -1 and 1 up, such that they are between min and max."""
half_range = (max_ - min_) / 2
return [float_x * half_range + min_ + half_range for float_x in x]
def test_scale_to_range(self):
"""Make sure scale_to_range will actually return the min and max values
(avoid "off by one" errors)"""
max_ = (255, 1000, 2**15)
min_ = (50, 0, -255)
for x1, x2 in itertools.product(min_, max_):
scaled = self.scale_to_range(x1, x2, (-1, 1))
self.assertEqual(scaled, [x1, x2])
def test_expo_symmetry(self):
"""Test that the transformation is symmetric for expo parameter
x = f(g(x)), if f._expo == - g._expo
with the following constraints:
min = -1, max = 1
gain = 1
deadzone = 0
we can remove the constraints for min, max and gain,
by scaling the values appropriately after each transformation
"""
for init_args in self.get_init_args(deadzone=(0,)):
f = Transformation(*init_args.values())
init_args.expo = -init_args.expo
g = Transformation(*init_args.values())
scale = functools.partial(
self.scale_to_range,
init_args.min_,
init_args.max_,
)
for x in scale():
y1 = g(x)
y1 = y1 / init_args.gain # remove the gain
y1 = scale((y1,))[0] # remove the min/max constraint
y2 = f(y1)
y2 = y2 / init_args.gain # remove the gain
y2 = scale((y2,))[0] # remove the min/max constraint
self.assertAlmostEqual(x, y2, msg=f"test expo symmetry for {init_args}")
def test_origin_symmetry(self):
"""Test that the transformation is symmetric to the origin_hash
f(x) = - f(-x)
within the constraints: min = -max
"""
for init_args in self.get_init_args():
init_args.min_ = -init_args.max_
f = Transformation(*init_args.values())
for x in self.scale_to_range(init_args.min_, init_args.max_):
self.assertAlmostEqual(
f(x),
-f(-x),
msg=f"test origin_hash symmetry at {x=} for {init_args}",
)
def test_gain(self):
"""Test that f(max) = gain and f(min) = -gain."""
for init_args in self.get_init_args():
f = Transformation(*init_args.values())
self.assertAlmostEqual(
f(init_args.max_),
init_args.gain,
msg=f"test gain for {init_args}",
)
self.assertAlmostEqual(
f(init_args.min_),
-init_args.gain,
msg=f"test gain for {init_args}",
)
def test_deadzone(self):
"""Test the Transfomation returns exactly 0 in the range of the deadzone."""
for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
f = Transformation(*init_args.values())
for x in self.scale_to_range(
init_args.min_,
init_args.max_,
x=(
init_args.deadzone * 0.999,
-init_args.deadzone * 0.999,
0.3 * init_args.deadzone,
0,
),
):
self.assertEqual(f(x), 0, msg=f"test deadzone at {x=} for {init_args}")
def test_continuity_near_deadzone(self):
"""Test that the Transfomation is continues (no sudden jump) next to the
deadzone"""
for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
f = Transformation(*init_args.values())
scale = functools.partial(
self.scale_to_range,
init_args.min_,
init_args.max_,
)
x = (
init_args.deadzone * 1.00001,
init_args.deadzone * 1.001,
-init_args.deadzone * 1.00001,
-init_args.deadzone * 1.001,
)
scaled_x = scale(x=x)
p1 = (x[0], f(scaled_x[0])) # first point right of deadzone
p2 = (x[1], f(scaled_x[1])) # second point right of deadzone
# calculate a linear function y = m * x + b from p1 and p2
m = (p1[1] - p2[1]) / (p1[0] - p2[0])
b = p1[1] - m * p1[0]
# the zero intersection of that function must be close to the
# edge of the deadzone
self.assertAlmostEqual(
-b / m,
init_args.deadzone,
places=5,
msg=f"test continuity at {init_args.deadzone} for {init_args}",
)
# same thing on the other side
p1 = (x[2], f(scaled_x[2]))
p2 = (x[3], f(scaled_x[3]))
m = (p1[1] - p2[1]) / (p1[0] - p2[0])
b = p1[1] - m * p1[0]
self.assertAlmostEqual(
-b / m,
-init_args.deadzone,
places=5,
msg=f"test continuity at {- init_args.deadzone} for {init_args}",
)
def test_expo_out_of_range(self):
f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=1.3)
self.assertRaises(ValueError, f, 0)
f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=-1.3)
self.assertRaises(ValueError, f, 0)
def test_returns_one_for_range_between_minus_and_plus_one(self):
for init_args in self.get_init_args(max_=(1,), min_=(-1,), gain=(1,)):
f = Transformation(*init_args.values())
self.assertEqual(f(1), 1)
self.assertEqual(f(-1), -1)
|