| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 
 | /*=========================================================================
  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkFEMElement2DC0LinearLine.cxx,v $
  Language:  C++
  Date:      $Date: 2009-01-28 21:19:16 $
  Version:   $Revision: 1.7 $
  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.
=========================================================================*/
// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif
#include "itkFEMElement2DC0LinearLine.h"
#include "vnl/vnl_math.h"
namespace itk {
namespace fem {
void
Element2DC0LinearLine
::GetIntegrationPointAndWeight(unsigned int i, VectorType& pt, Float& w, unsigned int order) const
{
  // FIXME: range checking
  // default integration order
  if (order==0) { order=DefaultIntegrationOrder; }
  pt.set_size(1);
  pt[0]=gaussPoint[order][i];
  w=gaussWeight[order][i];
}
unsigned int
Element2DC0LinearLine
::GetNumberOfIntegrationPoints(unsigned int order) const
{
  // FIXME: range checking
  // default integration order
  if (order==0) { order=DefaultIntegrationOrder; }
  return order;
}
Element2DC0LinearLine::VectorType
Element2DC0LinearLine
::ShapeFunctions( const VectorType& pt ) const
{
  /* Linear Line element has two shape functions  */
  VectorType shapeF(2);
  shapeF[0] = 0.5 - pt[0]/2.0;
  shapeF[1] = 0.5 + pt[0]/2.0;
  return shapeF;
}
void
Element2DC0LinearLine
::ShapeFunctionDerivatives( const VectorType&, MatrixType& shapeD ) const
{
  shapeD.set_size(1,2);
  shapeD[0][0] = -0.5;
  shapeD[0][1] =  0.5;
}
void
Element2DC0LinearLine
::Jacobian( const VectorType&, MatrixType& J, const MatrixType*) const
{
  // Since the line element defines only one global coordinate
  // and lives in 2D space, we need to provide a custom Jacobian.
  J.set_size(1,1);
  // Get the length of the element
  // Note: This simple implementation is only valid for linear line elements.
  //       For higher order elements we must integrate to obtain the exact
  //       element length
  Float l=(this->m_node[1]->GetCoordinates() - this->m_node[0]->GetCoordinates()).magnitude();
  J[0][0]=l/2;
}
bool
Element2DC0LinearLine
::GetLocalFromGlobalCoordinates( const VectorType& globalPt , VectorType& localPt ) const
{
  // FIXME: write proper implementation
  localPt=globalPt;
  return false;
}
/**
 * Draw the element on device context pDC.
 */
#ifdef FEM_BUILD_VISUALIZATION
void
Element2DC0LinearLine
::Draw(CDC* pDC, Solution::ConstPointer sol) const
{
  int x1=m_node[0]->GetCoordinates()[0]*DC_Scale;
  int y1=m_node[0]->GetCoordinates()[1]*DC_Scale;
  int x2=m_node[1]->GetCoordinates()[0]*DC_Scale;
  int y2=m_node[1]->GetCoordinates()[1]*DC_Scale;
  
  x1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(0))*DC_Scale;
  y1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(1))*DC_Scale;
  x2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(0))*DC_Scale;
  y2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(1))*DC_Scale;
  pDC->MoveTo(x1,y1);
  pDC->LineTo(x2,y2);
}
#endif
}} // end namespace itk::fem
 |