File: itkFEMElement2DC0LinearQuadrilateral.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (213 lines) | stat: -rw-r--r-- 6,305 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkFEMElement2DC0LinearQuadrilateral.cxx,v $
  Language:  C++
  Date:      $Date: 2009-04-05 10:56:50 $
  Version:   $Revision: 1.13 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif

#include "itkFEMElement2DC0LinearQuadrilateral.h"
#include "vnl/vnl_math.h"

namespace itk {
namespace fem {

void
Element2DC0LinearQuadrilateral
::GetIntegrationPointAndWeight(unsigned int i, VectorType& pt, Float& w, unsigned int order) const
{
  // FIXME: range checking

  // default integration order
  if (order==0) { order=DefaultIntegrationOrder; }

  pt.set_size(2);

  pt[0]=gaussPoint[order][i%order];
  pt[1]=gaussPoint[order][i/order];

  w=gaussWeight[order][i%order]*gaussWeight[order][i/order];

}

unsigned int
Element2DC0LinearQuadrilateral
::GetNumberOfIntegrationPoints(unsigned int order) const
{
  // FIXME: range checking

  // default integration order
  if (order==0) { order=DefaultIntegrationOrder; }

  return order*order;
}

Element2DC0LinearQuadrilateral::VectorType
Element2DC0LinearQuadrilateral
::ShapeFunctions( const VectorType& pt ) const
{
  /* Linear quadrilateral element has four shape functions  */
  VectorType shapeF(4);

  /**
   * Linear quadrilateral element has local coordinates
   * (-1,-1), (1,-1), (1,1), and (-1,1)
   */
  
  /* given local point x=(r,s), where -1 <= r,s <= 1 and */

  /* shape function 1: ((1 - r) * (1 - s)) / 4  (node 1) */
  shapeF[0] = (1 - pt[0]) * (1 - pt[1]) * .25;

  /* shape function 2: ((1 + r) * (1 - s)) / 4  (node 2) */
  shapeF[1] = (1 + pt[0]) * (1 - pt[1]) * .25;

  /* shape function 3: ((1 + r) * (1 + s)) / 4  (node 3) */
  shapeF[2] = (1 + pt[0]) * (1 + pt[1]) * .25;

  /* shape function 1: ((1 - r) * (1 + s)) / 4  (node 4) */
  shapeF[3] = (1 - pt[0]) * (1 + pt[1]) * .25;

  return shapeF;
}

void
Element2DC0LinearQuadrilateral
::ShapeFunctionDerivatives( const VectorType& pt, MatrixType& shapeD ) const
{
  /** functions at directions r and s.  */
  shapeD.set_size(2,4);

  /** Derivative w.r.t r for shape function 1 (node 1) */
  shapeD[0][0] = -(1 - pt[1]) * .25;

  /** Derivative w.r.t s for shape function 1 (node 1) */
  shapeD[1][0] = -(1 - pt[0]) * .25;

  /** Derivative w.r.t r for shape function 2 (node 2) */
  shapeD[0][1] = +(1 - pt[1]) * .25;

  /** Derivative w.r.t s for shape function 2 (node 2) */
  shapeD[1][1] = -(1 + pt[0]) * .25;

  /** Derivative w.r.t r for shape function 3 (node 3) */
  shapeD[0][2] = +(1 + pt[1]) * .25;

  /** Derivative w.r.t s for shape function 3 (node 3) */
  shapeD[1][2] = +(1 + pt[0]) * .25;

  /** Derivative w.r.t r for shape function 4 (node 4) */
  shapeD[0][3] = -(1 + pt[1]) * .25;

  /** Derivative w.r.t s for shape function 4 (node 4) */
  shapeD[1][3] = +(1 - pt[0]) * .25;

}

bool
Element2DC0LinearQuadrilateral
::GetLocalFromGlobalCoordinates( const VectorType& globalPt , VectorType& localPt) const
{

  Float x1, x2, x3, x4, y1, y2, y3, y4, xce, yce, xb, yb, xcn, ycn,
        A, J1, J2, x0, y0, dx, dy, be, bn, ce, cn;

  localPt.set_size(2);
  localPt.fill(0.0);

  x1 = this->m_node[0]->GetCoordinates()[0];   y1 = this->m_node[0]->GetCoordinates()[1];
  x2 = this->m_node[1]->GetCoordinates()[0];   y2 = this->m_node[1]->GetCoordinates()[1];
  x3 = this->m_node[2]->GetCoordinates()[0];   y3 = this->m_node[2]->GetCoordinates()[1];
  x4 = this->m_node[3]->GetCoordinates()[0];   y4 = this->m_node[3]->GetCoordinates()[1];

  xb = x1 - x2 + x3 - x4;
  yb = y1 - y2 + y3 - y4;

  xce = x1 + x2 - x3 - x4;
  yce = y1 + y2 - y3 - y4;

  xcn = x1 - x2 - x3 + x4;
  ycn = y1 - y2 - y3 + y4;

  A  = 0.5 * (((x3 - x1) * (y4 - y2)) - ((x4 - x2) * (y3 - y1)));
  J1 = ((x3 - x4) * (y1 - y2)) - ((x1 - x2) * (y3 - y4));
  J2 = ((x2 - x3) * (y1 - y4)) - ((x1 - x4) * (y2 - y3));

  x0 = 0.25 * (x1 + x2 + x3 + x4);
  y0 = 0.25 * (y1 + y2 + y3 + y4);

  dx = globalPt[0] - x0;
  dy = globalPt[1] - y0;

  be =  A - (dx * yb) + (dy * xb);
  bn = -A - (dx * yb) + (dy * xb);
  ce = (dx * yce) - (dy * xce);
  cn = (dx * ycn) - (dy * xcn);

  localPt[0] = (2 * ce) / (-vcl_sqrt((be * be) - (2 * J1 * ce)) - be);
  localPt[1] = (2 * cn) / ( vcl_sqrt((bn * bn) + (2 * J2 * cn)) - bn);

  bool isInside=true;

  if (localPt[0] < -1.0 || localPt[0] > 1.0 || localPt[1] < -1.0 || localPt[1] > 1.0 )
    {
    isInside=false;
    }

  return isInside;
}

/**
 * Draw the element on device context pDC.
 */
#ifdef FEM_BUILD_VISUALIZATION
void
Element2DC0LinearQuadrilateral
::Draw(CDC* pDC, Solution::ConstPointer sol) const
{

  int x1=m_node[0]->GetCoordinates()[0]*DC_Scale;
  int y1=m_node[0]->GetCoordinates()[1]*DC_Scale;
  
  int x2=m_node[1]->GetCoordinates()[0]*DC_Scale;
  int y2=m_node[1]->GetCoordinates()[1]*DC_Scale;
  
  int x3=m_node[2]->GetCoordinates()[0]*DC_Scale;
  int y3=m_node[2]->GetCoordinates()[1]*DC_Scale;
  
  int x4=m_node[3]->GetCoordinates()[0]*DC_Scale;
  int y4=m_node[3]->GetCoordinates()[1]*DC_Scale;

  x1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(0))*DC_Scale;
  y1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(1))*DC_Scale;
  x2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(0))*DC_Scale;
  y2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(1))*DC_Scale;
  x3 += sol->GetSolutionValue(this->m_node[2]->GetDegreeOfFreedom(0))*DC_Scale;
  y3 += sol->GetSolutionValue(this->m_node[2]->GetDegreeOfFreedom(1))*DC_Scale;
  x4 += sol->GetSolutionValue(this->m_node[3]->GetDegreeOfFreedom(0))*DC_Scale;
  y4 += sol->GetSolutionValue(this->m_node[3]->GetDegreeOfFreedom(1))*DC_Scale;

  pDC->MoveTo(x1,y1);
  pDC->LineTo(x2,y2);
  pDC->LineTo(x3,y3);
  pDC->LineTo(x4,y4);
  pDC->LineTo(x1,y1);

}
#endif

}} // end namespace itk::fem