File: itkFEMElement2DC0QuadraticTriangular.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (214 lines) | stat: -rw-r--r-- 6,544 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkFEMElement2DC0QuadraticTriangular.cxx,v $
  Language:  C++
  Date:      $Date: 2009-01-28 21:34:49 $
  Version:   $Revision: 1.5 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "itkFEMElement2DC0QuadraticTriangular.h"
#include "itkFEMElement2DC0LinearTriangular.h"

namespace itk {
namespace fem {

void
Element2DC0QuadraticTriangular
::GetIntegrationPointAndWeight(unsigned int i, VectorType& pt, Float& w, unsigned int order) const
{
  // FIXME: range checking

  // default integration order
  if (order==0 || order>5) { order=DefaultIntegrationOrder; }

  pt.set_size(3);

  /**
   * We provide implementation for 5 different integration rules
   * as defined in chapter 24 - Implementation of Iso-P Truangular
   * Elements, of http://titan.colorado.edu/courses.d/IFEM.d/.
   *
   * Note that the order parameter here does not correspond to the
   * actual order of integration, but rather the degree of polynomials
   * that are exactly integrated. In addition, there are two integration
   * rules for polynomials of 2nd degree. In order to allow using both of
   * them, we assign the index number 3 to the second one. Note that this
   * does not mean that the rule is capable of integrating the polynomials
   * of 3rd degree. It's just an index of a rule.
   */
  pt.copy_in(Element2DC0LinearTriangular::trigGaussRuleInfo[order][i]);

  // We scale the weight by 0.5, to take into account
  // the factor that must be applied when integrating.
  w=0.5*Element2DC0LinearTriangular::trigGaussRuleInfo[order][i][3];
}

unsigned int
Element2DC0QuadraticTriangular
::GetNumberOfIntegrationPoints(unsigned int order) const
{
  // FIXME: range checking

  // default integration order
  if (order==0) { order=DefaultIntegrationOrder; }

  return Element2DC0LinearTriangular::Nip[order];
}

Element2DC0QuadraticTriangular::VectorType
Element2DC0QuadraticTriangular
::ShapeFunctions( const VectorType& pt ) const
{
  // Quadratic triangular element has 6 shape functions
  VectorType shapeF(6);

  // Shape functions are equal to coordinates
  VectorType::element_type p2 = 1.0 - pt[0] - pt[1];
  shapeF[0]=pt[0]*(2*pt[0]-1);
  shapeF[1]=pt[1]*(2*pt[1]-1);
  shapeF[2]=p2*(2*p2-1);
  shapeF[3]=4*pt[0]*pt[1];
  shapeF[4]=4*pt[1]*p2;
  shapeF[5]=4*p2*pt[0];

  return shapeF;
}

void
Element2DC0QuadraticTriangular
::ShapeFunctionDerivatives( const VectorType& pt, MatrixType& shapeD ) const
{
  VectorType::element_type p2 = 1.0 - pt[0] - pt[1];

  shapeD.set_size(3,6);
  shapeD.fill(0.0);

  shapeD[0][0]=4*pt[0]-1;
  shapeD[0][3]=4*pt[1];
  shapeD[0][5]=4*p2;

  shapeD[1][1]=4*pt[1]-1;
  shapeD[1][3]=4*pt[0];
  shapeD[1][4]=4*p2;

  shapeD[2][2]=4*p2-1;
  shapeD[2][4]=4*pt[1];
  shapeD[2][5]=4*pt[0];

}

Element2DC0QuadraticTriangular::Float
Element2DC0QuadraticTriangular
::JacobianDeterminant( const VectorType& pt, const MatrixType* pJ ) const
{

//  return Superclass::JacobianDeterminant( pt, pJ );

  MatrixType* pJlocal=0;

  // If Jacobian was not provided, we
  // need to compute it here
  if(pJ==0)
    {
    pJlocal=new MatrixType();
    this->Jacobian( pt, *pJlocal );
    pJ=pJlocal;
    }

  Float det=(((*pJ)[1][0]-(*pJ)[0][0]) * ((*pJ)[2][1]-(*pJ)[0][1])) -
            (((*pJ)[0][1]-(*pJ)[1][1]) * ((*pJ)[0][0]-(*pJ)[2][0]));

  delete pJlocal;

  return det;

}

void
Element2DC0QuadraticTriangular
::JacobianInverse( const VectorType& pt, MatrixType& invJ, const MatrixType* pJ ) const
{
  
  MatrixType* pJlocal=0;

  // If Jacobian was not provided, we
  // need to compute it here
  if(pJ==0)
    {
    pJlocal=new MatrixType();
    this->Jacobian( pt, *pJlocal );
    pJ=pJlocal;
    }

  // Note that inverse of Jacobian is not quadratic matrix
  invJ.set_size(2,3);

  Float idet=1.0/this->JacobianDeterminant( pt, pJ );

  invJ[0][0]=idet*((*pJ)[1][1]-(*pJ)[2][1]); invJ[0][1]=idet*((*pJ)[2][1]-(*pJ)[0][1]); invJ[0][2]=idet*((*pJ)[0][1]-(*pJ)[1][1]);
  invJ[1][0]=idet*((*pJ)[2][0]-(*pJ)[1][0]); invJ[1][1]=idet*((*pJ)[0][0]-(*pJ)[2][0]); invJ[1][2]=idet*((*pJ)[1][0]-(*pJ)[0][0]);

  delete pJlocal;
}

/**
 * Draw the element on device context pDC.
 */
#ifdef FEM_BUILD_VISUALIZATION
void
Element2DC0QuadraticTriangular
::Draw(CDC* pDC, Solution::ConstPointer sol) const 
{

  int x1=m_node[0]->GetCoordinates()[0]*DC_Scale;
  int y1=m_node[0]->GetCoordinates()[1]*DC_Scale;
  
  int x2=m_node[1]->GetCoordinates()[0]*DC_Scale;
  int y2=m_node[1]->GetCoordinates()[1]*DC_Scale;
  
  int x3=m_node[2]->GetCoordinates()[0]*DC_Scale;
  int y3=m_node[2]->GetCoordinates()[1]*DC_Scale;

  int x4=m_node[3]->GetCoordinates()[0]*DC_Scale;
  int y4=m_node[3]->GetCoordinates()[1]*DC_Scale;
  
  int x5=m_node[4]->GetCoordinates()[0]*DC_Scale;
  int y5=m_node[4]->GetCoordinates()[1]*DC_Scale;
  
  int x6=m_node[5]->GetCoordinates()[0]*DC_Scale;
  int y6=m_node[5]->GetCoordinates()[1]*DC_Scale;
  
  x1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(0))*DC_Scale;
  y1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(1))*DC_Scale;
  x2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(0))*DC_Scale;
  y2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(1))*DC_Scale;
  x3 += sol->GetSolutionValue(this->m_node[2]->GetDegreeOfFreedom(0))*DC_Scale;
  y3 += sol->GetSolutionValue(this->m_node[2]->GetDegreeOfFreedom(1))*DC_Scale;
  x4 += sol->GetSolutionValue(this->m_node[3]->GetDegreeOfFreedom(0))*DC_Scale;
  y4 += sol->GetSolutionValue(this->m_node[3]->GetDegreeOfFreedom(1))*DC_Scale;
  x5 += sol->GetSolutionValue(this->m_node[4]->GetDegreeOfFreedom(0))*DC_Scale;
  y5 += sol->GetSolutionValue(this->m_node[4]->GetDegreeOfFreedom(1))*DC_Scale;
  x6 += sol->GetSolutionValue(this->m_node[5]->GetDegreeOfFreedom(0))*DC_Scale;
  y6 += sol->GetSolutionValue(this->m_node[5]->GetDegreeOfFreedom(1))*DC_Scale;

  pDC->MoveTo(x1,y1);
  pDC->LineTo(x4,y4);
  pDC->LineTo(x2,y2);
  pDC->LineTo(x5,y5);
  pDC->LineTo(x3,y3);
  pDC->LineTo(x6,y6);
  pDC->LineTo(x1,y1);

}
#endif

}} // end namespace itk::fem