1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkFEMGenerateMesh.cxx,v $
Language: C++
Date: $Date: 2009-01-29 21:28:16 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkFEMGenerateMesh.h"
#include "itkFEMElement2DC0LinearQuadrilateral.h"
#include "itkFEMElement3DC0LinearHexahedron.h"
#include <math.h>
namespace itk {
namespace fem {
/**
* Generate a rectangular mesh of quadrilateral elements
*/
void Generate2DRectilinearMesh(itk::fem::Element::ConstPointer e0, Solver& S, vnl_vector<double>& orig, vnl_vector<double>& size, vnl_vector<double>& Nel)
{
// Check for correct number of dimensions
if(orig.size() != Element2DC0LinearQuadrilateral::NumberOfSpatialDimensions ||
size.size() != Element2DC0LinearQuadrilateral::NumberOfSpatialDimensions ||
Nel.size() != Element2DC0LinearQuadrilateral::NumberOfSpatialDimensions)
{
throw FEMException(__FILE__, __LINE__, "GenerateMesh<Element2DC0LinearQuadrilateral>::Rectangular");
}
// Clear existing elements, loads and nodes in Solver
S.load.clear();
S.el.clear();
S.node.clear();
// Number of nodes in each dimension
Nel[0]=vcl_floor(Nel[0]);
Nel[1]=vcl_floor(Nel[1]);
double Ni=static_cast<double>(Nel[0]);
double Nj=static_cast<double>(Nel[1]);
// Create nodes
Node::Pointer n;
int gn=0; // number of node
for(double j=0; j<=Nj; j++)
{
for(double i=0; i<=Ni; i++)
{
n=new Node(orig[0]+i*size[0]/Nel[0], orig[1]+j*size[1]/Nel[1]);
n->GN=gn;
gn++;
S.node.push_back(FEMP<Node>(n));
}
}
// Create elements
gn=0; // global number of the element
Element2DC0LinearQuadrilateral::Pointer e;
for(unsigned int j=0; j<Nj; j++)
{
for(unsigned int i=0; i<Ni; i++)
{
e=dynamic_cast<Element2DC0LinearQuadrilateral*>(e0->Clone());
e->SetNode(0,S.node.Find((unsigned int) (i+ (Ni+1)*j) ));
e->SetNode(1,S.node.Find((unsigned int) (i+1+(Ni+1)*j) ));
e->SetNode(2,S.node.Find((unsigned int) (i+1+(Ni+1)*(j+1)) ));
e->SetNode(3,S.node.Find((unsigned int) (i+ (Ni+1)*(j+1)) ));
e->GN=gn;
gn++;
S.el.push_back(FEMP<Element>(e));
}
}
}
/**
* Generate a rectangular mesh of hexahedron elements
*/
void Generate3DRectilinearMesh
(itk::fem::Element::ConstPointer e0, Solver& S, vnl_vector<double>& orig,
vnl_vector<double>& size, vnl_vector<double>& Nel)
{
// Check for correct number of dimensions
if(orig.size() != Element3DC0LinearHexahedron::NumberOfSpatialDimensions ||
size.size() != Element3DC0LinearHexahedron::NumberOfSpatialDimensions ||
Nel.size() != Element3DC0LinearHexahedron::NumberOfSpatialDimensions)
{
throw FEMException(__FILE__, __LINE__, "GenerateMesh<Element2DC0LinearQuadrilateral>::Rectangular");
}
// Number of nodes in each dimension
Nel[0]=vcl_floor(Nel[0]);
Nel[1]=vcl_floor(Nel[1]);
Nel[2]=vcl_floor(Nel[2]);
double Ni=static_cast<double>(Nel[0]);
double Nj=static_cast<double>(Nel[1]);
double Nk=static_cast<double>(Nel[2]);
// Create nodes
Node::Pointer n;
int gn=0; // number of node
for(double k=0; k<=Nk; k++)
{
for(double j=0; j<=Nj; j++)
{
for(double i=0; i<=Ni; i++)
{
double xx,yy,zz;
xx=orig[0]+i*size[0]/Nel[0];
yy=orig[1]+j*size[1]/Nel[1];
zz=orig[2]+k*size[2]/Nel[2];
//std::cout << " xx " << xx << " yy " << yy << " zz " << zz << std::endl;
n=new Node(xx,yy,zz);
n->GN=gn;
gn++;
S.node.push_back(FEMP<Node>(n));
}
}
}
// Create elements
gn=0; // global number of the element
itk::fem::Element3DC0LinearHexahedron::Pointer e;
for(unsigned int k=0; k<Nk; k++)
{
for(unsigned int j=0; j<Nj; j++)
{
for(unsigned int i=0; i<Ni; i++)
{
e=dynamic_cast<Element3DC0LinearHexahedron*>(e0->Clone());
e->SetNode(0,S.node.Find((unsigned int) (i+ (Ni+1)*(j +(Nj+1)*k) )));
e->SetNode(1,S.node.Find((unsigned int) (i+1+(Ni+1)*(j +(Nj+1)*k) )));
e->SetNode(2,S.node.Find((unsigned int) (i+1+(Ni+1)*(j+1+(Nj+1)*k) )));
e->SetNode(3,S.node.Find((unsigned int) (i+ (Ni+1)*(j+1+(Nj+1)*k) )));
e->SetNode(4,S.node.Find((unsigned int) (i+ (Ni+1)*(j +(Nj+1)*(k+1)) )));
e->SetNode(5,S.node.Find((unsigned int) (i+1+(Ni+1)*(j +(Nj+1)*(k+1)) )));
e->SetNode(6,S.node.Find((unsigned int) (i+1+(Ni+1)*(j+1+(Nj+1)*(k+1)) )));
e->SetNode(7,S.node.Find((unsigned int) (i+ (Ni+1)*(j+1+(Nj+1)*(k+1)) )));
e->GN=gn;
gn++;
S.el.push_back(FEMP<Element>(e));
}
}
}
}
}} // end namespace itk::fem
|