File: itkFEMSolverHyperbolic.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (209 lines) | stat: -rw-r--r-- 6,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkFEMSolverHyperbolic.cxx,v $
  Language:  C++
  Date:      $Date: 2009-01-30 21:53:03 $
  Version:   $Revision: 1.7 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif

#include "itkFEMSolverHyperbolic.h"

namespace itk {
namespace fem {

SolverHyperbolic::SolverHyperbolic()
{
  this->InitializeLinearSystemWrapper();
  m_beta=0.25;
  m_gamma=0.5;
  m_deltaT=1.0;
}

void
SolverHyperbolic
::InitializeLinearSystemWrapper(void)
{ 
  // set the maximum number of matrices and vectors that
  // we will need to store inside.
  m_ls->SetNumberOfMatrices(5);
  m_ls->SetNumberOfVectors(6);
  m_ls->SetNumberOfSolutions(3);
}

void
SolverHyperbolic
::AssembleElementMatrix(Element::Pointer e)
{
  // Copy the element stiffness matrix for faster access.
  Element::MatrixType Ke;
  e->GetStiffnessMatrix(Ke);
  Element::MatrixType Me;
  e->GetMassMatrix(Me);

  // ... same for number of DOF
  int Ne=e->GetNumberOfDegreesOfFreedom();

  // step over all rows in element matrix
  for(int j=0; j<Ne; j++)
    {
    // step over all columns in element matrix
    for(int k=0; k<Ne; k++) 
      {
      // error checking. all GFN should be =>0 and <NGFN
      if ( e->GetDegreeOfFreedom(j) >= NGFN ||
           e->GetDegreeOfFreedom(k) >= NGFN  )
        {
        throw FEMExceptionSolution(__FILE__,__LINE__,"Solver::AssembleElementMatrix()","Illegal GFN!");
        }

      /**
       * Here we finaly update the corresponding element
       * in the master stiffness matrix. We first check if 
       * element in Ke is zero, to prevent zeros from being 
       * allocated in sparse matrix.
       */
      if ( Ke[j][k]!=Float(0.0) )
        {
        this->m_ls->AddMatrixValue( e->GetDegreeOfFreedom(j), e->GetDegreeOfFreedom(k), Ke[j][k], matrix_K );
        }
      if ( Me[j][k]!=Float(0.0) )
        {
        this->m_ls->AddMatrixValue( e->GetDegreeOfFreedom(j), e->GetDegreeOfFreedom(k), Me[j][k], matrix_M );
        }

      }
    
    }

}

void
SolverHyperbolic
::InitializeMatrixForAssembly(unsigned int N)
{
  this->m_ls->SetSystemOrder(N);
  this->m_ls->InitializeMatrix();
  this->m_ls->InitializeMatrix(matrix_K);
  this->m_ls->InitializeMatrix(matrix_M);
  this->m_ls->InitializeMatrix(matrix_C);
  for(unsigned int i=0; i<N; i++)
    {
    m_ls->SetMatrixValue(i,i,1.0,matrix_C);
    }
}

void
SolverHyperbolic
::FinalizeMatrixAfterAssembly( void )
{
  // Apply the boundary conditions to the matrix
  // FIXME: this doesn't work in general
  this->ApplyBC(0,matrix_M);
  this->ApplyBC(0,matrix_K);

  // Calculate initial values of vector_a
  // M*a0=F - C*v0 - K*d0
  // FIXME: take into account the d0 and v0.
  m_ls->InitializeSolution(0);
  m_ls->InitializeSolution(solution_a);

  m_ls->CopyMatrix(matrix_M,0);
  this->AssembleF();
  m_ls->Solve();
  m_ls->InitializeVector(vector_tmp);
  m_ls->CopySolution2Vector(0,vector_tmp);
  m_ls->InitializeSolution(solution_a);
  m_ls->CopyVector2Solution(vector_tmp,solution_a);
  m_ls->DestroyVector(vector_tmp);

  m_ls->InitializeSolution(solution_d);
  m_ls->InitializeSolution(solution_v);

  // Compose the lhs of system of lin. eq.
  m_ls->InitializeMatrix(matrix_tmp);
  m_ls->CopyMatrix(matrix_C,matrix_tmp);
  m_ls->ScaleMatrix(this->m_gamma*this->m_deltaT, matrix_tmp);
  m_ls->AddMatrixMatrix(0,matrix_tmp);

  m_ls->CopyMatrix(matrix_K,matrix_tmp);
  m_ls->ScaleMatrix(this->m_beta*this->m_deltaT*this->m_deltaT, matrix_tmp);
  m_ls->AddMatrixMatrix(0,matrix_tmp);
  m_ls->DestroyMatrix(matrix_tmp);

}

void
SolverHyperbolic
::Solve()
{
  m_ls->InitializeVector(vector_tmp);
  m_ls->InitializeVector(vector_dhat);
  m_ls->InitializeVector(vector_vhat);
  m_ls->InitializeVector(vector_ahat);

  // We're using the Newmark method to obtain the solution
  
  // Assume that vectors solution_a solution_v and solution_d contain
  // solutions obtained at the previous time step.

  // Calculate the predictors
  for(unsigned int i=0; i<m_ls->GetSystemOrder(); i++)
    {
    Float d0=m_ls->GetSolutionValue(i,solution_d);
    Float v0=m_ls->GetSolutionValue(i,solution_v);
    Float a0=m_ls->GetSolutionValue(i,solution_a);
    m_ls->SetVectorValue( i, -(d0+this->m_deltaT*v0+0.5*this->m_deltaT*this->m_deltaT*(1.0-2.0*this->m_beta)*a0), vector_dhat);
    m_ls->SetVectorValue( i, -(v0+this->m_deltaT*(1.0-this->m_gamma)*a0), vector_vhat);
    }

  // Calculate the rhs of master equation
  m_ls->MultiplyMatrixVector(vector_tmp,matrix_C,vector_vhat);
  m_ls->AddVectorVector(0,vector_tmp);
  m_ls->MultiplyMatrixVector(vector_tmp,matrix_K,vector_dhat);
  m_ls->AddVectorVector(0,vector_tmp);

  // Solve the system of linear equations for accelerations
  m_ls->Solve();

  // move the solution for a to the correct vector
  m_ls->CopySolution2Vector(0,vector_tmp);
  m_ls->CopyVector2Solution(vector_tmp,solution_a);

  // Calculate displacements and velocities
  for(unsigned int i=0; i<m_ls->GetSystemOrder(); i++)
    {
    Float dhat=-m_ls->GetVectorValue(i,vector_dhat);
    Float vhat=-m_ls->GetVectorValue(i,vector_vhat);
    Float a1=m_ls->GetSolutionValue(i,solution_a);

    m_ls->SetSolutionValue(i, dhat +
                           this->m_beta*this->m_deltaT*this->m_deltaT*a1
                           , solution_d);

    m_ls->SetSolutionValue(i, vhat +
                           this->m_gamma*this->m_deltaT*a1
                           , solution_v);
    }

  m_ls->DestroyVector(vector_tmp);
  m_ls->DestroyVector(vector_dhat);
  m_ls->DestroyVector(vector_vhat);
  m_ls->DestroyVector(vector_ahat);

}

}} // end namespace itk::fem