File: itkIterativeSupervisedTrainingFunction.txx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (121 lines) | stat: -rw-r--r-- 3,780 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkIterativeSupervisedTrainingFunction.txx,v $
  Language:  C++
  Date:      $Date: 2007-08-23 20:02:20 $
  Version:   $Revision: 1.4 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkIterativeSupervisedTrainingFunction_txx
#define __itkIterativeSupervisedTrainingFunction_txx

#include "itkIterativeSupervisedTrainingFunction.h"
#include <fstream>

namespace itk
{
namespace Statistics
{

template<class TSample, class TTargetVector, class ScalarType>
IterativeSupervisedTrainingFunction<TSample,TTargetVector,ScalarType>
::IterativeSupervisedTrainingFunction()
{
  this->m_LearningRate = 0.5;
  m_Threshold = 0;
  m_Stop = false;
}

template<class TSample, class TTargetVector, class ScalarType>
void IterativeSupervisedTrainingFunction<TSample,TTargetVector,ScalarType>
::SetNumOfIterations(long i)
{
  this->SetIterations(i);
  this->Modified();
}

template<class TSample, class TTargetVector, class ScalarType>
void IterativeSupervisedTrainingFunction<TSample,TTargetVector,ScalarType>
::Train(typename IterativeSupervisedTrainingFunction<TSample, TTargetVector, ScalarType>::NetworkType* Net,
        TSample* samples, TTargetVector* targets)
{
  this->SetTrainingSamples(samples);
  this->SetTargetValues(targets);

  InternalVectorType outputvector;
  InternalVectorType errorvector;
  outputvector.SetSize(targets->GetMeasurementVectorSize());
  errorvector.SetSize(targets->GetMeasurementVectorSize());

  //typename Superclass::OutputVectorType outputvector;
  typename Superclass::VectorType inputvector;
  typename Superclass::OutputVectorType targetvector;
  //typename Superclass::OutputVectorType errorvector;

#ifdef __OLD_CODE__
  std::ofstream outfile;
  outfile.open("output.txt");
#endif

  const long num_iterations = this->GetIterations();
  m_Stop = false;
  long i = 0;
  while (!m_Stop)
    {
    int temp = rand() % (this->m_InputSamples.size());
    inputvector = this->m_InputSamples[temp];
    targetvector = this->m_Targets[temp];
    outputvector = Net->GenerateOutput(inputvector);
    for(unsigned int k=0; k<targetvector.Size(); k++)
      {
      errorvector[k] = targetvector[k] - outputvector[k];
      }
#ifdef __OLD_CODE__
    outfile <<errorvector[0] << std::endl;
#endif
    Net->BackwardPropagate(this->m_PerformanceFunction->EvaluateDerivative(errorvector));
    Net->UpdateWeights(this->m_LearningRate);
    i++;
    if (i > num_iterations)
      {
      m_Stop = true;
      }
    }
#ifdef __OLD_CODE__
  if (this->m_PerformanceFunction->Evaluate(errorvector) < m_Threshold
   && i < num_iterations)
    {
    std::cout << "Goal Met " << std::endl;
    }
  else
    {
    std::cout << "Goal Not Met Max Iterations Reached " << std::endl;
    }
#endif
}

/** Print the object */
template<class TSample, class TTargetVector, class ScalarType>
void
IterativeSupervisedTrainingFunction<TSample,TTargetVector,ScalarType>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  os << indent << "IterativeSupervisedTrainingFunction(" << this << ")" << std::endl;
  os << indent << "m_Threshold = " << m_Threshold << std::endl;
  os << indent << "m_Stop = " << m_Stop << std::endl;
  Superclass::PrintSelf( os, indent );
}

} // end namespace Statistics
} // end namespace itk

#endif