File: itkGaussianMixtureModelComponent.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (118 lines) | stat: -rwxr-xr-x 4,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGaussianMixtureModelComponent.h,v $
  Language:  C++
  Date:      $Date: 2009-03-04 15:23:48 $
  Version:   $Revision: 1.11 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkGaussianMixtureModelComponent_h
#define __itkGaussianMixtureModelComponent_h

#include "itkMixtureModelComponentBase.h"
#include "itkGaussianDensityFunction.h"
#include "itkWeightedMeanCalculator.h"
#include "itkWeightedCovarianceCalculator.h"

namespace itk { 
namespace Statistics {
  
/** \class GaussianMixtureModelComponent
 * \brief is a component (derived from MixtureModelComponentBase) for
 * Gaussian class. This class is used in
 * ExpectationMaximizationMixtureModelEstimator. 
 *
 * On every iteration of EM estimation, this class's GenerateData
 * method is called to compute the new distribution parameters.
 *
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained at run time from the
 * sample set as input. Please use the function 
 * GetMeasurementVectorSize() to get the length. 
 * 
 * \sa MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator
 */

template< class TSample >
class GaussianMixtureModelComponent :
    public MixtureModelComponentBase< TSample >
{
public:
  /**Standard class typedefs. */
  typedef GaussianMixtureModelComponent        Self;
  typedef MixtureModelComponentBase< TSample > Superclass;
  typedef SmartPointer<Self>                   Pointer;
  typedef SmartPointer<const Self>             ConstPointer;

  /**Standard Macros */
  itkTypeMacro(GaussianMixtureModelComponent, MixtureModelComponentBase);
  itkNewMacro(Self);


  /** Typedefs from the superclass */
  typedef typename Superclass::MeasurementVectorType     MeasurementVectorType;
  typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;
  typedef typename Superclass::MembershipFunctionType    MembershipFunctionType;
  typedef typename Superclass::WeightArrayType           WeightArrayType;
  typedef typename Superclass::ParametersType            ParametersType;

  /** Type of the membership function. Gaussian density function */
  typedef GaussianDensityFunction< MeasurementVectorType > 
  NativeMembershipFunctionType;
  
  /** Types of the mean and the covariance calculator that will update
   *  this component's distribution parameters */
  typedef WeightedMeanCalculator< TSample >       MeanEstimatorType;
  typedef WeightedCovarianceCalculator< TSample > CovarianceEstimatorType;

  /** Type of the mean vector */
  typedef typename MeanEstimatorType::OutputType MeanType;

  /** Type of the covariance matrix */
  typedef typename CovarianceEstimatorType::OutputType CovarianceType;

  /** Sets the input sample */
  void SetSample(const TSample* sample);

  /** Sets the component's distribution parameters. */
  void SetParameters(const ParametersType &parameters);
  
protected:
  GaussianMixtureModelComponent();
  virtual ~GaussianMixtureModelComponent() {}
  void PrintSelf(std::ostream& os, Indent indent) const;
  
  /** Returns the sum of squared changes in parameters between
   * iterations */
  double CalculateParametersChange();

  /** Computes the new distribution parameters */
  void GenerateData();

private:
  typename NativeMembershipFunctionType::Pointer m_GaussianDensityFunction;
  MeanType                                       m_Mean;
  CovarianceType                                 m_Covariance;
  typename MeanEstimatorType::Pointer            m_MeanEstimator;
  typename CovarianceEstimatorType::Pointer      m_CovarianceEstimator;
}; // end of class
    
} // end of namespace Statistics 
} // end of namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianMixtureModelComponent.txx"
#endif

#endif