1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGaussianMixtureModelComponent.h,v $
Language: C++
Date: $Date: 2009-03-04 15:23:48 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGaussianMixtureModelComponent_h
#define __itkGaussianMixtureModelComponent_h
#include "itkMixtureModelComponentBase.h"
#include "itkGaussianDensityFunction.h"
#include "itkWeightedMeanCalculator.h"
#include "itkWeightedCovarianceCalculator.h"
namespace itk {
namespace Statistics {
/** \class GaussianMixtureModelComponent
* \brief is a component (derived from MixtureModelComponentBase) for
* Gaussian class. This class is used in
* ExpectationMaximizationMixtureModelEstimator.
*
* On every iteration of EM estimation, this class's GenerateData
* method is called to compute the new distribution parameters.
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* \c MeasurementVectorSize has been removed to allow the length of a measurement
* vector to be specified at run time. It is now obtained at run time from the
* sample set as input. Please use the function
* GetMeasurementVectorSize() to get the length.
*
* \sa MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator
*/
template< class TSample >
class GaussianMixtureModelComponent :
public MixtureModelComponentBase< TSample >
{
public:
/**Standard class typedefs. */
typedef GaussianMixtureModelComponent Self;
typedef MixtureModelComponentBase< TSample > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/**Standard Macros */
itkTypeMacro(GaussianMixtureModelComponent, MixtureModelComponentBase);
itkNewMacro(Self);
/** Typedefs from the superclass */
typedef typename Superclass::MeasurementVectorType MeasurementVectorType;
typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;
typedef typename Superclass::MembershipFunctionType MembershipFunctionType;
typedef typename Superclass::WeightArrayType WeightArrayType;
typedef typename Superclass::ParametersType ParametersType;
/** Type of the membership function. Gaussian density function */
typedef GaussianDensityFunction< MeasurementVectorType >
NativeMembershipFunctionType;
/** Types of the mean and the covariance calculator that will update
* this component's distribution parameters */
typedef WeightedMeanCalculator< TSample > MeanEstimatorType;
typedef WeightedCovarianceCalculator< TSample > CovarianceEstimatorType;
/** Type of the mean vector */
typedef typename MeanEstimatorType::OutputType MeanType;
/** Type of the covariance matrix */
typedef typename CovarianceEstimatorType::OutputType CovarianceType;
/** Sets the input sample */
void SetSample(const TSample* sample);
/** Sets the component's distribution parameters. */
void SetParameters(const ParametersType ¶meters);
protected:
GaussianMixtureModelComponent();
virtual ~GaussianMixtureModelComponent() {}
void PrintSelf(std::ostream& os, Indent indent) const;
/** Returns the sum of squared changes in parameters between
* iterations */
double CalculateParametersChange();
/** Computes the new distribution parameters */
void GenerateData();
private:
typename NativeMembershipFunctionType::Pointer m_GaussianDensityFunction;
MeanType m_Mean;
CovarianceType m_Covariance;
typename MeanEstimatorType::Pointer m_MeanEstimator;
typename CovarianceEstimatorType::Pointer m_CovarianceEstimator;
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianMixtureModelComponent.txx"
#endif
#endif
|