File: itkGoodnessOfFitMixtureModelCostFunction.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (153 lines) | stat: -rwxr-xr-x 6,131 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGoodnessOfFitMixtureModelCostFunction.h,v $
  Language:  C++
  Date:      $Date: 2009-03-04 15:23:49 $
  Version:   $Revision: 1.7 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGoodnessOfFitMixtureModelCostFunction_h
#define __itkGoodnessOfFitMixtureModelCostFunction_h

#include "itkSingleValuedCostFunction.h"
#include "itkHistogram.h"
#include "itkGoodnessOfFitComponentBase.h"
#include "itkGoodnessOfFitFunctionBase.h"
#include "itkFunctionBase.h"

namespace itk { 
namespace Statistics {

/** \class GoodnessOfFitMixtureModelCostFunction 
 *  \brief calculates the goodness-of-fit statstics for multivarate 
 *  mixture model 
 *
 * The goodness-of-fit statistics for a single model is discrepancy
 * between the observed frequency and the expected frequency. 
 * To reduce computational load of multivariate case, this class
 * uses projective method. 
 * 
 * The projective multivariate goodness-of-fit statistics calculation follows 
 * the following steps:
 *   
 *   1) creates a subsample that includes the measurement vectors that fall 
 *      in a spherical kernel.
 *   2) finds the base axes determined by the eigen vectors of the covariance 
 *      matrix.
 *   3) project the subsample on to one of the base axes (from step 2)
 *   4) calculates the observed frequencies (in an 1D Histogram object) after 
 *      projection (step 3) and the expected frequencies (in an 1D Histogram 
 *      object)
 *   5) calculates the discrepancy between the observed histogram and 
 *      the expected histogram using a goodness-of-fit statistics
 *   6) repeat step 3) - 5) and sum the goodness-of-fit values
 *
 * For a mixture model, the above procedure is applied independently for each 
 * model (module). The sum of the goodness-of-fit values of models is the
 * goodness-of-fit statistics for the mixture model.
 *
 * The step 1) - 4) is done by the subclasses of GoodnessOfFitComponentBase, and
 * the step 5) is done by the subclasses of GoodnessOfFitFunctionBase.
 *
 * To see how this class interacts GoodnessOfFitComponentBase objects and 
 * GoodnessOfFitFunctionBase objects, please look at the implementation of
 * the GetValue method of this class.
 *
 * Better fit means smaller goodness-of-fit value in this implementation. 
 * This class is following the SingleValuedCostFunction interfaces so that
 * users can uses this function with any subclasses of 
 * SingleValuedNonLinearOptimizer class as long as they do not use
 * GetDerivative and GetValueAndDerivative methods.
 * 
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * 'MeasurementVectorSize'  has been removed to allow the length of a measurement
 * vector to be specified at run time.  
 * 
 * \sa GoodnessOfFitFunctionBase, GoodnessOfFitComponentBase, 
 * SingleValuedCostFunction, SingleValuedNonLinearOptimizer
 */

template< class TInputSample >
class ITK_EXPORT GoodnessOfFitMixtureModelCostFunction 
  : public SingleValuedCostFunction 
{
public:
  /** Standard class typedefs */
  typedef GoodnessOfFitMixtureModelCostFunction Self;
  typedef SingleValuedCostFunction              Superclass;
  typedef SmartPointer< Self >                  Pointer;
  typedef SmartPointer< const Self >            ConstPointer;
  
  /** Run-time type information (and related methods). */
  itkTypeMacro(GoodnessOfFitMixtureModelCostFunction, SingleValuedCostFunction);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  typedef TInputSample                                     InputSampleType;
  typedef typename TInputSample::MeasurementType           MeasurementType;
  typedef typename TInputSample::MeasurementVectorType     MeasurementVectorType;
  typedef typename TInputSample::MeasurementVectorSizeType MeasurementVectorSizeType;

  /**  ParametersType typedef.
   *  It defines a position in the optimization search space. */
  typedef SingleValuedCostFunction::ParametersType ParamtersType;

  /**  MeasureType typedef.
   *  It defines a type used to return the cost function value. */
  typedef SingleValuedCostFunction::MeasureType MeasureType;

  typedef GoodnessOfFitComponentBase< TInputSample > ComponentType;
  typedef std::vector< ComponentType* >              ComponentVectorType;

  typedef GoodnessOfFitFunctionBase< typename ComponentType::HistogramType > 
  FunctionType;

  /** aceesing methods for the sample manipulator */ 
  void AddComponent(ComponentType* component);
  
  /** aceesing methods for the expected probability histogram */ 
  void SetFunction(FunctionType* core);

  FunctionType* GetFunction()
    { return m_Function; }

  virtual unsigned int GetNumberOfParameters() const;

  /** This method returns the value of the cost function corresponding
    * to the specified parameters. */ 
  virtual MeasureType GetValue( const ParametersType & parameters ) const;

  /** This method returns the derivative of the cost function corresponding
    * to the specified parameters.   */ 
  virtual void GetDerivative( const ParametersType &,
                                    DerivativeType & ) const {}

protected:
  GoodnessOfFitMixtureModelCostFunction();
  virtual ~GoodnessOfFitMixtureModelCostFunction();
  virtual void PrintSelf(std::ostream& os, Indent indent) const;

private:
  /** helper classes */
  ComponentVectorType m_Components;
  FunctionType*       m_Function;
}; // end of class

} // end of namespace Statistics 
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGoodnessOfFitMixtureModelCostFunction.txx"
#endif

#endif