1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGoodnessOfFitMixtureModelCostFunction.txx,v $
Language: C++
Date: $Date: 2009-03-04 15:23:50 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGoodnessOfFitMixtureModelCostFunction_txx
#define __itkGoodnessOfFitMixtureModelCostFunction_txx
#include "itkGoodnessOfFitMixtureModelCostFunction.h"
namespace itk {
namespace Statistics {
template< class TInputSample >
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::GoodnessOfFitMixtureModelCostFunction()
{
m_Function = 0;
}
template< class TInputSample >
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::~GoodnessOfFitMixtureModelCostFunction()
{
}
template< class TInputSample >
void
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Function " << m_Function << std::endl;
for ( unsigned int i = 0; i < m_Components.size(); i++)
{
os << indent << "Components["<< i <<"] " << m_Components[i] << std::endl;
}
}
template< class TInputSample >
void
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::AddComponent(ComponentType* component)
{
m_Components.push_back(component);
}
template< class TInputSample >
void
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::SetFunction(FunctionType* core)
{
if ( m_Function != core )
{
m_Function = core;
this->Modified();
}
}
template< class TInputSample >
unsigned int
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::GetNumberOfParameters() const
{
unsigned int size = 0;
ComponentType* component;
for ( unsigned int componentIndex = 0; componentIndex < m_Components.size();
componentIndex++ )
{
component = m_Components[componentIndex];
size += component->GetNumberOfParameters();
}
return size;
}
template< class TInputSample >
typename GoodnessOfFitMixtureModelCostFunction< TInputSample >::MeasureType
GoodnessOfFitMixtureModelCostFunction< TInputSample >
::GetValue(const ParametersType ¶meters) const
{
unsigned int i;
double value = 0.0;
unsigned int index = 0;
unsigned int paramSize;
ComponentType* component;
for ( unsigned int componentIndex = 0; componentIndex < m_Components.size();
componentIndex++ )
{
component = m_Components[componentIndex];
paramSize = component->GetNumberOfParameters();
ParametersType params(paramSize);
for ( i = 0; i < paramSize; i++)
{
params[i] = parameters[index];
index++;
}
component->SetParameters(params);
component->SetUseExpectedHistogram(m_Function->GetUseExpectedHistogram());
if ( component->GetObservedHistogram() == 0 )
{
component->CreateHistograms();
}
component->Resample();
if ( component->GetResampledSample()->GetTotalFrequency() == 0 )
{
return NumericTraits< double >::max();
}
component->CalculateProjectionAxes();
m_Function->
SetTotalObservedScale(component->GetTotalObservedScale());
m_Function->SetObservedHistogram(component->GetObservedHistogram());
if ( m_Function->GetUseExpectedHistogram() )
{
m_Function->SetExpectedHistogram(component->GetExpectedHistogram());
}
MeasurementVectorSizeType measurementVectorSize =
component->GetMeasurementVectorSize();
if( measurementVectorSize == 0 )
{
itkExceptionMacro( << "Must set MeasurementVectorSize for the sample" );
}
for (i = 0; i < measurementVectorSize; i++)
{
component->Project(i);
if ( m_Function->GetUseExpectedHistogram() )
{
component->UpdateExpectedHistogram();
}
m_Function->Update();
value += m_Function->GetOutput();
}
} // end of while ( iter ...
return value;
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|