File: itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (172 lines) | stat: -rw-r--r-- 7,170 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.h,v $
  Language:  C++
  Date:      $Date: 2009-05-20 16:21:47 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator_h
#define __itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator_h

#include "itkHistogram.h"
#include "itkMacro.h"

namespace itk {
namespace Statistics {

/** \class GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator 
 *  \brief This class computes texture feature coefficients from a grey level
 * co-occurrence matrix.
 *
 * This class computes features that summarize image texture, given a grey level
 * co-occurrence matrix (generated by a ScalarImageToGreyLevelCooccurrenceMatrixGenerator
 * or related class).  
 *
 * The features calculated are as follows (where \f$ g(i, j) \f$ is the element in
 * cell i, j of a a normalized GLCM):
 *
 * "Energy" \f$ = f_1 = \sum_{i,j}g(i, j)^2 \f$
 *
 * "Entropy" \f$ = f_2 = -\sum_{i,j}g(i, j) \log_2 g(i, j)\f$, or 0 if \f$g(i, j) = 0\f$
 *
 * "Correlation" \f$ = f_3 = \sum_{i,j}\frac{(i - \mu)(j - \mu)g(i, j)}{\sigma^2} \f$
 *
 * "Difference Moment" \f$= f_4 = \sum_{i,j}\frac{1}{1 + (i - j)^2}g(i, j) \f$
 *
 * "Inertia" \f$ = f_5 = \sum_{i,j}(i - j)^2g(i, j) \f$ (sometimes called "contrast.")
 *
 * "Cluster Shade" \f$ = f_6 = \sum_{i,j}((i - \mu) + (j - \mu))^3 g(i, j) \f$
 *
 * "Cluster Prominence" \f$ = f_7 = \sum_{i,j}((i - \mu) + (j - \mu))^4 g(i, j) \f$
 *
 * "Haralick's Correlation" \f$ = f_8 = \frac{\sum_{i,j}(i, j) g(i, j) -\mu_t^2}{\sigma_t^2} \f$
 * where \f$\mu_t\f$ and \f$\sigma_t\f$ are the mean and standard deviation of the row
 * (or column, due to symmetry) sums.
 *
 * Above, \f$ \mu =  \f$ (weighted pixel average) \f$ = \sum_{i,j}i \cdot g(i, j) = 
 * \sum_{i,j}j \cdot g(i, j) \f$ (due to matrix summetry), and
 *
 * \f$ \sigma =  \f$ (weighted pixel variance) \f$ = \sum_{i,j}(i - \mu)^2 \cdot g(i, j) = 
 * \sum_{i,j}(j - \mu)^2 \cdot g(i, j)  \f$  (due to matrix summetry)
 *
 * A good texture feature set to use is the Conners, Trivedi and Harlow set: 
 * features 1, 2, 4, 5, 6, and 7. There is some correlation between the various
 * features, so using all of them at the same time is not necessarialy a good idea.
 *
 * NOTA BENE: The input histogram will be forcably normalized!
 * This algorithm takes three passes through the input
 * histogram if the histogram was already normalized, and four if not.
 * 
 * Web references:
 *
 * http://www.cssip.uq.edu.au/meastex/www/algs/algs/algs.html
 * http://www.ucalgary.ca/~mhallbey/texture/texture_tutorial.html
 *
 * Print references:
 *
 * Haralick, R.M., K. Shanmugam and I. Dinstein. 1973.  Textural Features for 
 * Image Classification. IEEE Transactions on Systems, Man and Cybernetics. 
 * SMC-3(6):610-620.
 *
 * Haralick, R.M. 1979. Statistical and Structural Approaches to Texture. 
 * Proceedings of the IEEE, 67:786-804.
 *
 * R.W. Conners and C.A. Harlow. A Theoretical Comaprison of Texture Algorithms. 
 * IEEE Transactions on Pattern Analysis and Machine Intelligence,  2:204-222, 1980.
 *
 * R.W. Conners, M.M. Trivedi, and C.A. Harlow. Segmentation of a High-Resolution
 * Urban Scene using Texture  Operators. Computer Vision, Graphics and Image 
 * Processing, 25:273-310,  1984.
 *
 * \sa ScalarImageToGreyLevelCooccurrenceMatrixGenerator
 * \sa MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator
 * \sa ScalarImageTextureCalculator
 *
 * Author: Zachary Pincus
 */
    
/** Texture feature types */
enum TextureFeatureName { Energy, Entropy, Correlation,
  InverseDifferenceMoment, Inertia, ClusterShade, ClusterProminence,
  HaralickCorrelation };
    
template< class THistogram >
class GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator : public Object
{
public:
  /** Standard typedefs */
  typedef GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator Self;
  typedef Object                                                   Superclass;
  typedef SmartPointer<Self>                                       Pointer;
  typedef SmartPointer<const Self>                                 ConstPointer;
  
  /** Run-time type information (and related methods). */
  itkTypeMacro(GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator, Object);
  
  /** standard New() method support */
  itkNewMacro(Self);
    
  typedef THistogram                                      HistogramType;
  typedef typename HistogramType::Pointer                 HistogramPointer;
  typedef typename HistogramType::ConstPointer            HistogramConstPointer;
  typedef typename HistogramType::MeasurementType         MeasurementType;
  typedef typename HistogramType::MeasurementVectorType   MeasurementVectorType;
  typedef typename HistogramType::IndexType               IndexType;
  typedef typename HistogramType::FrequencyType           FrequencyType;
    
  /** Triggers the Computation of the histogram */
  void Compute( void );
  
  /** Connects the GLCM histogram over which the features are going to be computed */
  itkSetObjectMacro( Histogram, HistogramType );
  itkGetObjectMacro( Histogram, HistogramType );
  
  /** Methods to return the feature values.
      \warning These outputs are only valid after the Compute() method has been invoked 
      \sa Compute */
  double GetFeature(TextureFeatureName feature);
  
  itkGetMacro(Energy, double);
  itkGetMacro(Entropy, double);
  itkGetMacro(Correlation, double);
  itkGetMacro(InverseDifferenceMoment, double);
  itkGetMacro(Inertia, double);
  itkGetMacro(ClusterShade, double);
  itkGetMacro(ClusterProminence, double);
  itkGetMacro(HaralickCorrelation, double);
    
protected:
  GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator() {};
  virtual ~GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator() {};
  void PrintSelf(std::ostream& os, Indent indent) const;

private:
  GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented
   
  HistogramPointer m_Histogram;
  double m_Energy, m_Entropy, m_Correlation, m_InverseDifferenceMoment,
    m_Inertia, m_ClusterShade, m_ClusterProminence, m_HaralickCorrelation;
  void NormalizeHistogram(void);
  void ComputeMeansAndVariances( double &pixelMean, double &marginalMean, 
                                 double &marginalDevSquared, double &pixelVariance );
};


} // end of namespace Statistics 
} // end of namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.txx"
#endif

#endif