1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkHistogramToEntropyImageFilter.h,v $
Language: C++
Date: $Date: 2009-04-01 14:36:37 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkHistogramToEntropyImageFilter_h
#define __itkHistogramToEntropyImageFilter_h
#include "itkHistogramToImageFilter.h"
namespace itk
{
/** \class HistogramToEntropyImageFilter
* \brief The class takes a histogram as an input and gives the entropy
* image as the output. A pixel, at position I, in the output image is given by
*
* \f[
* f(I) = -p \log_2 p
* \f]
*
* where
* \f[
* p = \frac{q_I}{\sum_{i \in I} q_I}
* \f]
* where \f$q_I\f$ is the frequency of measurement vector, I.
*
* \f$p\f$ is the frequency of a measurement vector by the sum of all frequencies =
* Probability of the the measurement vector
*
* The output image is of type double.
*
* This is useful in plotting the joint histograms during registration.
*
* \sa HistogramToImageFilter, HistogramToLogProbabilityImageFilter,
* HistogramToIntensityImageFilter, HistogramToProbabilityImageFilter
*
*/
namespace Function {
template< class TInput, class TOutput=double >
class HistogramEntropyFunction
{
public:
//Probability function = Number of occurances in each bin /
// Total Number of occurances.
//
// Returns pixels of float..
typedef TOutput OutputPixelType;
HistogramEntropyFunction():
m_TotalFrequency(1) {}
~HistogramEntropyFunction() {};
inline OutputPixelType operator()( const TInput & A ) const
{
if( A )
{
const double p = static_cast<OutputPixelType>(A) /
static_cast<OutputPixelType>(m_TotalFrequency);
return static_cast<OutputPixelType>( (-1) * p * vcl_log(p) / vcl_log(2.0));
}
else
{
const double p = static_cast<OutputPixelType>(A+1) /
static_cast<OutputPixelType>(m_TotalFrequency);
return static_cast<OutputPixelType>( (-1) * p * vcl_log(p) / vcl_log(2.0));
}
}
void SetTotalFrequency( const unsigned long n )
{
m_TotalFrequency = n;
}
unsigned long GetTotalFrequency() const
{
return m_TotalFrequency;
}
private:
unsigned long m_TotalFrequency;
};
}
template <class THistogram, class TOutputPixel=double >
class ITK_EXPORT HistogramToEntropyImageFilter :
public HistogramToImageFilter< THistogram,
Function::HistogramEntropyFunction< unsigned long, TOutputPixel > >
{
public:
/** Standard class typedefs. */
typedef HistogramToEntropyImageFilter Self;
/** Standard "Superclass" typedef. */
typedef HistogramToImageFilter< THistogram,
Function::HistogramEntropyFunction< unsigned long, TOutputPixel > >
Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro( HistogramToEntropyImageFilter, HistogramToImageFilter );
/** Method for creation through the object factory. */
itkNewMacro(Self);
protected:
HistogramToEntropyImageFilter() {}
virtual ~HistogramToEntropyImageFilter() {}
private:
HistogramToEntropyImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
};
} // end namespace itk
#endif
|