1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkKdTreeGenerator.txx,v $
Language: C++
Date: $Date: 2009-03-04 15:23:51 $
Version: $Revision: 1.23 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkKdTreeGenerator_txx
#define __itkKdTreeGenerator_txx
namespace itk {
namespace Statistics {
template< class TSample >
KdTreeGenerator< TSample >
::KdTreeGenerator()
{
m_SourceSample = 0;
m_BucketSize = 16;
m_Subsample = SubsampleType::New();
m_MeasurementVectorSize = 0;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Source Sample: ";
if ( m_SourceSample != 0 )
{
os << m_SourceSample << std::endl;
}
else
{
os << "not set." << std::endl;
}
os << indent << "Bucket Size: " << m_BucketSize << std::endl;
os << indent << "MeasurementVectorSize: " <<
m_MeasurementVectorSize << std::endl;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::SetSample(TSample* sample)
{
m_SourceSample = sample;
m_Subsample->SetSample(sample);
m_Subsample->InitializeWithAllInstances();
m_MeasurementVectorSize = sample->GetMeasurementVectorSize();
MeasurementVectorTraits::SetLength( m_TempLowerBound, m_MeasurementVectorSize );
MeasurementVectorTraits::SetLength( m_TempUpperBound, m_MeasurementVectorSize );
MeasurementVectorTraits::SetLength( m_TempMean, m_MeasurementVectorSize );
}
template< class TSample >
void
KdTreeGenerator< TSample >
::SetBucketSize(unsigned int size)
{
m_BucketSize = size;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::GenerateData()
{
if ( m_SourceSample == 0 )
{
return;
}
if ( m_Tree.IsNull() )
{
m_Tree = KdTreeType::New();
m_Tree->SetSample(m_SourceSample);
m_Tree->SetBucketSize(m_BucketSize);
}
MeasurementVectorType lowerBound;
MeasurementVectorTraits::SetLength( lowerBound, m_MeasurementVectorSize );
MeasurementVectorType upperBound;
MeasurementVectorTraits::SetLength( upperBound, m_MeasurementVectorSize );
for(unsigned int d = 0; d < m_MeasurementVectorSize; d++)
{
lowerBound[d] = NumericTraits< MeasurementType >::NonpositiveMin();
upperBound[d] = NumericTraits< MeasurementType >::max();
}
KdTreeNodeType* root =
this->GenerateTreeLoop(0, m_Subsample->Size(), lowerBound, upperBound, 0);
m_Tree->SetRoot(root);
}
template< class TSample >
inline typename KdTreeGenerator< TSample >::KdTreeNodeType*
KdTreeGenerator< TSample >
::GenerateNonterminalNode(unsigned int beginIndex,
unsigned int endIndex,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound,
unsigned int level)
{
typedef typename KdTreeType::KdTreeNodeType NodeType;
MeasurementType dimensionLowerBound;
MeasurementType dimensionUpperBound;
MeasurementType partitionValue;
unsigned int partitionDimension = 0;
unsigned int i;
MeasurementType spread;
MeasurementType maxSpread;
unsigned int medianIndex;
SubsamplePointer subsample = this->GetSubsample();
// Sanity check. Verify that the subsample has measurement vectors of the
// same length as the sample generated by the tree.
if( this->GetMeasurementVectorSize() != subsample->GetMeasurementVectorSize() )
{
itkExceptionMacro( << "Measurement Vector Length mismatch" );
}
// find most widely spread dimension
FindSampleBoundAndMean< SubsampleType >(subsample,
beginIndex, endIndex,
m_TempLowerBound, m_TempUpperBound,
m_TempMean);
maxSpread = NumericTraits< MeasurementType >::NonpositiveMin();
for (i = 0; i < m_MeasurementVectorSize; i++)
{
spread = m_TempUpperBound[i] - m_TempLowerBound[i];
if (spread >= maxSpread)
{
maxSpread = spread;
partitionDimension = i;
}
}
medianIndex = (endIndex - beginIndex) / 2;
//
// Find the medial element by using the NthElement function
// based on the STL implementation of the QuickSelect algorithm.
//
partitionValue =
NthElement< SubsampleType >(m_Subsample,
partitionDimension,
beginIndex, endIndex,
medianIndex);
medianIndex += beginIndex;
// save bounds for cutting dimension
dimensionLowerBound = lowerBound[partitionDimension];
dimensionUpperBound = upperBound[partitionDimension];
upperBound[partitionDimension] = partitionValue;
const unsigned int beginLeftIndex = beginIndex;
const unsigned int endLeftIndex = medianIndex;
NodeType* left = GenerateTreeLoop(beginLeftIndex, endLeftIndex, lowerBound, upperBound, level + 1);
upperBound[partitionDimension] = dimensionUpperBound;
lowerBound[partitionDimension] = partitionValue;
const unsigned int beginRightIndex = medianIndex+1;
const unsigned int endRightIndex = endIndex;
NodeType* right = GenerateTreeLoop(beginRightIndex, endRightIndex, lowerBound, upperBound, level + 1);
lowerBound[partitionDimension] = dimensionLowerBound;
typedef KdTreeNonterminalNode< TSample > KdTreeNonterminalNodeType;
KdTreeNonterminalNodeType * nonTerminalNode =
new KdTreeNonterminalNodeType( partitionDimension,
partitionValue,
left,
right);
nonTerminalNode->AddInstanceIdentifier(
subsample->GetInstanceIdentifier( medianIndex ) );
return nonTerminalNode;
}
template< class TSample >
inline typename KdTreeGenerator< TSample >::KdTreeNodeType*
KdTreeGenerator< TSample >
::GenerateTreeLoop(unsigned int beginIndex,
unsigned int endIndex,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound,
unsigned int level)
{
if (endIndex - beginIndex <= m_BucketSize)
{
// numberOfInstances small, make a terminal node
if (endIndex == beginIndex)
{
// return the pointer to empty terminal node
return m_Tree->GetEmptyTerminalNode();
}
else
{
KdTreeTerminalNode< TSample >* ptr =
new KdTreeTerminalNode< TSample >();
for (unsigned int j = beginIndex; j < endIndex; j++)
{
ptr->AddInstanceIdentifier(
this->GetSubsample()->GetInstanceIdentifier(j));
}
// return a terminal node
return ptr;
}
}
else
{
return this->GenerateNonterminalNode(beginIndex, endIndex,
lowerBound, upperBound, level + 1);
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|