File: itkSampleClassifier.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (149 lines) | stat: -rw-r--r-- 5,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSampleClassifier.h,v $
  Language:  C++
  Date:      $Date: 2009-03-04 19:29:53 $
  Version:   $Revision: 1.17 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSampleClassifier_h
#define __itkSampleClassifier_h

#include <vector>

#include "itkObject.h"
#include "itkExceptionObject.h"
#include "itkSubsample.h"
#include "itkMembershipSample.h"
#include "itkClassifierBase.h"

namespace itk {
namespace Statistics {

/** \class SampleClassifier 
 *  \brief Integration point for MembershipCalculator, DecisionRule, and 
 * target sample data.
 *
 * The first template argument is the type of the target sample data 
 * that this classifier will assign a class label for each measurement 
 * vector. The second one is the type of a membership value calculator
 * for each. A membership calculator represents a specific knowledge about
 * a class. In other words, it should tell us how "likely" is that a
 * measurement vector (pattern) belong to the class. The third argument
 * is the type of decision rule. The main role of a decision rule is 
 * comparing the return values of the membership calculators. However,
 * decision rule can include some prior knowledge that can improve the
 * result. 
 *
 * Before you call the GenerateData method to start the classification process, 
 * you should plug in all necessary parts ( one or more membership 
 * calculators, a decision rule, and a target sample data). To plug in 
 * the decision rule, you use SetDecisionRule method, for the target sample
 * data, SetSample method, and for the membership calculators, use 
 * AddMembershipCalculator method.
 *
 * As the method name indicates, you can have more than one membership 
 * calculator. One for each classes. The order you put the membership 
 * calculator becomes the class label for the class that is represented
 * by the membership calculator.
 *
 * The classification result is stored in a vector of Subsample object.
 * Each class has its own class sample (Subsample object) that has 
 * InstanceIdentifiers for all measurement vectors belong to the class. 
 * The InstanceIdentifiers come from the target sample data. Therefore,
 * the Subsample objects act as separate class masks. 
 *
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. Please use the function 
 * GetSample().GetMeasurementVectorSize() instead.
 *
 */

template< class TSample >
class ITK_EXPORT SampleClassifier : 
      public ClassifierBase< TSample >
{
public:
  /** Standard class typedefs */
  typedef SampleClassifier          Self;
  typedef ClassifierBase< TSample > Superclass;
  typedef SmartPointer< Self >      Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

 /** Standard macros */
  itkTypeMacro(SampleClassifier, Object);
  itkNewMacro(Self);

  /** Output type for GetClassSample method */
  typedef MembershipSample< TSample > OutputType;

  /** typedefs from TSample object */
  typedef typename TSample::MeasurementType       MeasurementType;
  typedef typename TSample::MeasurementVectorType MeasurementVectorType;

  
  /** typedefs from Superclass */
  typedef typename Superclass::MembershipFunctionPointerVector 
    MembershipFunctionPointerVector;

  typedef unsigned int                  ClassLabelType;
  typedef std::vector< ClassLabelType > ClassLabelVectorType;
  /** Sets the target data that will be classified by this */
  void SetSample(const TSample* sample);

  /** Returns the target data */
  const TSample* GetSample() const;

  /** Sets the user given class labels for membership functions.
   * If users do not provide class labels for membership functions by calling
   * this function, then the index of the membership function vector for a
   * membership function will be used as class label of measurement vectors
   * belong to the membership function */ 
  void SetMembershipFunctionClassLabels( ClassLabelVectorType& labels);

  /** Gets the user given class labels */
  ClassLabelVectorType& GetMembershipFunctionClassLabels() 
  { return m_ClassLabels; }

  /** Returns the classification result */
  OutputType* GetOutput();

protected:
  SampleClassifier();
  virtual ~SampleClassifier() {}
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Starts the classification process */
  void GenerateData();

private:
  /** Target data sample pointer */
  const TSample* m_Sample;

  /** Output pointer (MembershipSample) */
  typename OutputType::Pointer m_Output;

  /** User given class labels for membership functions */
  ClassLabelVectorType m_ClassLabels;
}; // end of class


} // end of namespace Statistics 
} // end of namespace itk


#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSampleClassifier.txx"
#endif

#endif