File: itkSampleClassifier.txx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (144 lines) | stat: -rw-r--r-- 3,607 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSampleClassifier.txx,v $
  Language:  C++
  Date:      $Date: 2009-03-04 19:29:53 $
  Version:   $Revision: 1.17 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSampleClassifier_txx
#define __itkSampleClassifier_txx

#include "itkSampleClassifier.h"

namespace itk { 
namespace Statistics {

template< class TSample >
SampleClassifier< TSample >
::SampleClassifier()
{
  m_Sample = 0;
  m_Output = OutputType::New();
}

template< class TSample >
void
SampleClassifier< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "Sample: ";
  if ( m_Sample != 0 )
    {
    os << m_Sample << std::endl;
    }
  else
    {
    os << "not set." << std::endl;
    }

  os << indent << "Output: " << m_Output << std::endl;
}

template< class TSample >
void
SampleClassifier< TSample >
::SetSample(const TSample* sample)
{
  if ( m_Sample != sample )
    {
    m_Sample = sample;
    m_Output->SetSample(sample);
    }
}

template< class TSample >
const TSample*
SampleClassifier< TSample >
::GetSample() const
{
  return m_Sample;
}

template< class TSample >
void
SampleClassifier< TSample >
::SetMembershipFunctionClassLabels(ClassLabelVectorType& labels)
{
  m_ClassLabels = labels;
}

template< class TSample >
void
SampleClassifier< TSample >
::GenerateData()
{
  unsigned int i;
  typename TSample::ConstIterator iter = this->GetSample()->Begin();
  typename TSample::ConstIterator end  = this->GetSample()->End();
  typename TSample::MeasurementVectorType measurements;

  m_Output->Resize( this->GetSample()->Size() );
  std::vector< double > discriminantScores;
  unsigned int numberOfClasses = this->GetNumberOfClasses();
  discriminantScores.resize(numberOfClasses);
  unsigned int classLabel;
  m_Output->SetNumberOfClasses(numberOfClasses);
  typename Superclass::DecisionRuleType::Pointer rule = 
    this->GetDecisionRule();

  if ( m_ClassLabels.size() != this->GetNumberOfMembershipFunctions() )
    {
    while (iter != end)
      {
      measurements = iter.GetMeasurementVector();
      for (i = 0; i < numberOfClasses; i++)
        {
        discriminantScores[i] =
          (this->GetMembershipFunction(i))->Evaluate(measurements);
        }
      classLabel = rule->Evaluate(discriminantScores);
      m_Output->AddInstance(classLabel, iter.GetInstanceIdentifier());
      ++iter;
      }
    }
  else
    {
    while (iter != end)
      {
      measurements = iter.GetMeasurementVector();
      for (i = 0; i < numberOfClasses; i++)
        {
        discriminantScores[i] = 
          (this->GetMembershipFunction(i))->Evaluate(measurements);
        }
      classLabel = rule->Evaluate(discriminantScores);
      m_Output->AddInstance(m_ClassLabels[classLabel], 
                            iter.GetInstanceIdentifier());
      ++iter;
      }
    }
}

template< class TSample >
typename SampleClassifier< TSample >::OutputType*
SampleClassifier< TSample >
::GetOutput() 
{
  return m_Output;
}

} // end of namespace Statistics 
} // end of namespace itk

#endif