1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkSampleClassifier.txx,v $
Language: C++
Date: $Date: 2009-03-04 19:29:53 $
Version: $Revision: 1.17 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkSampleClassifier_txx
#define __itkSampleClassifier_txx
#include "itkSampleClassifier.h"
namespace itk {
namespace Statistics {
template< class TSample >
SampleClassifier< TSample >
::SampleClassifier()
{
m_Sample = 0;
m_Output = OutputType::New();
}
template< class TSample >
void
SampleClassifier< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Sample: ";
if ( m_Sample != 0 )
{
os << m_Sample << std::endl;
}
else
{
os << "not set." << std::endl;
}
os << indent << "Output: " << m_Output << std::endl;
}
template< class TSample >
void
SampleClassifier< TSample >
::SetSample(const TSample* sample)
{
if ( m_Sample != sample )
{
m_Sample = sample;
m_Output->SetSample(sample);
}
}
template< class TSample >
const TSample*
SampleClassifier< TSample >
::GetSample() const
{
return m_Sample;
}
template< class TSample >
void
SampleClassifier< TSample >
::SetMembershipFunctionClassLabels(ClassLabelVectorType& labels)
{
m_ClassLabels = labels;
}
template< class TSample >
void
SampleClassifier< TSample >
::GenerateData()
{
unsigned int i;
typename TSample::ConstIterator iter = this->GetSample()->Begin();
typename TSample::ConstIterator end = this->GetSample()->End();
typename TSample::MeasurementVectorType measurements;
m_Output->Resize( this->GetSample()->Size() );
std::vector< double > discriminantScores;
unsigned int numberOfClasses = this->GetNumberOfClasses();
discriminantScores.resize(numberOfClasses);
unsigned int classLabel;
m_Output->SetNumberOfClasses(numberOfClasses);
typename Superclass::DecisionRuleType::Pointer rule =
this->GetDecisionRule();
if ( m_ClassLabels.size() != this->GetNumberOfMembershipFunctions() )
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
for (i = 0; i < numberOfClasses; i++)
{
discriminantScores[i] =
(this->GetMembershipFunction(i))->Evaluate(measurements);
}
classLabel = rule->Evaluate(discriminantScores);
m_Output->AddInstance(classLabel, iter.GetInstanceIdentifier());
++iter;
}
}
else
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
for (i = 0; i < numberOfClasses; i++)
{
discriminantScores[i] =
(this->GetMembershipFunction(i))->Evaluate(measurements);
}
classLabel = rule->Evaluate(discriminantScores);
m_Output->AddInstance(m_ClassLabels[classLabel],
iter.GetInstanceIdentifier());
++iter;
}
}
}
template< class TSample >
typename SampleClassifier< TSample >::OutputType*
SampleClassifier< TSample >
::GetOutput()
{
return m_Output;
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|