File: itkSampleClassifierWithMask.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (122 lines) | stat: -rwxr-xr-x 4,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSampleClassifierWithMask.h,v $
  Language:  C++
  Date:      $Date: 2009-03-04 19:29:54 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSampleClassifierWithMask_h
#define __itkSampleClassifierWithMask_h

#include <vector>

#include "itkObject.h"
#include "itkExceptionObject.h"
#include "itkSubsample.h"
#include "itkMembershipSample.h"
#include "itkSampleClassifier.h"

namespace itk { 
namespace Statistics {

/** \class SampleClassifierWithMask 
 *  \brief Integration point for MembershipCalculator, DecisionRule, and 
 * target sample data. This class is functionally identical to the 
 * SampleClassifier, except that users can perform only part of the
 * input sample that belongs to the subset of classes. 
 * 
 * To this purpose, this class needs a class mask sample that has
 * class labels as measurement vectors. Using SetMask method, users can
 * provide the class mask sample.
 *
 * To specify which classes should be included for classification, users
 * must call SetSelectedClassLabels method with class labels that will be
 * included. All measurement vectors that belong to the non-selected
 * classes will be classified to the class label that has been given 
 * by the SetOtherClassLabel method.
 *
 * Except for the modifications mentioned above, the basic behavior and
 * methods are identical to those of SampleClassifier.
 * 
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. Please use the function 
 * GetMeasurementVectorSize() instead.
 *
 * \sa SampleClassifier
 */

template< class TSample, class TMaskSample >
class ITK_EXPORT SampleClassifierWithMask : 
      public SampleClassifier< TSample >
{
public:
  /** Standard class typedefs */
  typedef SampleClassifierWithMask    Self;
  typedef SampleClassifier< TSample > Superclass;
  typedef SmartPointer< Self >        Pointer;
  typedef SmartPointer<const Self>    ConstPointer;

 /** Standard macros */
  itkTypeMacro(SampleClassifierWithMask, SampleClassifier);
  itkNewMacro(Self);

  /** Superclass typedefs */
  typedef typename Superclass::OutputType           OutputType;
  typedef typename Superclass::ClassLabelType       ClassLabelType;
  typedef typename Superclass::ClassLabelVectorType ClassLabelVectorType;

  /** typedefs from TSample object */
  typedef typename TSample::MeasurementType       MeasurementType;
  typedef typename TSample::MeasurementVectorType MeasurementVectorType;

  
  /** typedefs from Superclass */
  typedef typename Superclass::MembershipFunctionPointerVector 
    MembershipFunctionPointerVector;

  void SetMask( TMaskSample* mask );

  TMaskSample* GetMask()
    { return m_Mask.GetPointer(); }

  void SetSelectedClassLabels( ClassLabelVectorType& labels)
    { m_SelectedClassLabels = labels; }

  void SetOtherClassLabel( ClassLabelType label) 
    { m_OtherClassLabel = label; }
 
protected:
  SampleClassifierWithMask();
  virtual ~SampleClassifierWithMask() {}
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Starts the classification process */
  void GenerateData();

private:
  /** Mask sample pointer*/
  typename TMaskSample::Pointer m_Mask;
  ClassLabelVectorType          m_SelectedClassLabels;
  ClassLabelType                m_OtherClassLabel;
}; // end of class

} // end of namespace Statistics 
} // end of namespace itk


#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSampleClassifierWithMask.txx"
#endif

#endif