1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkSampleClassifierWithMask.txx,v $
Language: C++
Date: $Date: 2009-03-04 19:29:54 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkSampleClassifierWithMask_txx
#define __itkSampleClassifierWithMask_txx
#include "itkSampleClassifierWithMask.h"
namespace itk {
namespace Statistics {
template< class TSample, class TMaskSample >
SampleClassifierWithMask< TSample, TMaskSample >
::SampleClassifierWithMask()
{
m_OtherClassLabel = 0;
m_Mask = 0;
}
template< class TSample, class TMaskSample >
void
SampleClassifierWithMask< TSample, TMaskSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Mask: ";
if ( m_Mask.IsNotNull() )
{
os << m_Mask << std::endl;
}
else
{
os << "not set." << std::endl;
}
os << indent << "SelectedClassLabels: ";
for ( unsigned int i = 0; i < m_SelectedClassLabels.size(); ++i )
{
os << " " << m_SelectedClassLabels[i];
}
os << std::endl;
os << indent << "OtherClassLabel: " << m_OtherClassLabel << std::endl;
}
template< class TSample, class TMaskSample >
void
SampleClassifierWithMask< TSample, TMaskSample >
::SetMask(TMaskSample* mask)
{
if ( m_Mask != mask )
{
m_Mask = mask;
}
}
template< class TSample, class TMaskSample >
void
SampleClassifierWithMask< TSample, TMaskSample >
::GenerateData()
{
unsigned int i;
typename TSample::ConstIterator iter = this->GetSample()->Begin();
typename TSample::ConstIterator end = this->GetSample()->End();
typename TSample::MeasurementVectorType measurements;
typename TMaskSample::Iterator m_iter = this->GetMask()->Begin();
OutputType* output = this->GetOutput();
output->Resize(this->GetSample()->Size());
std::vector< double > discriminantScores;
unsigned int numberOfClasses = this->GetNumberOfClasses();
discriminantScores.resize(numberOfClasses);
output->SetNumberOfClasses(numberOfClasses + 1);
unsigned int classLabel;
typename Superclass::DecisionRuleType::Pointer rule =
this->GetDecisionRule();
typename Superclass::ClassLabelVectorType classLabels =
this->GetMembershipFunctionClassLabels();
if ( this->GetMask()->Size() != this->GetSample()->Size() )
{
itkExceptionMacro("The sizes of the mask sample and the input sample do not match.");
}
if ( classLabels.size() != this->GetNumberOfMembershipFunctions() )
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
if ( std::find(m_SelectedClassLabels.begin(),
m_SelectedClassLabels.end(),
m_iter.GetMeasurementVector()[0]) !=
m_SelectedClassLabels.end() )
{
for (i = 0; i < numberOfClasses; i++)
{
discriminantScores[i] =
(this->GetMembershipFunction(i))->Evaluate(measurements);
}
classLabel = rule->Evaluate(discriminantScores);
}
else
{
classLabel = m_OtherClassLabel;
}
output->AddInstance(classLabel, iter.GetInstanceIdentifier());
++iter;
++m_iter;
}
}
else
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
if ( std::find(m_SelectedClassLabels.begin(),
m_SelectedClassLabels.end(),
m_iter.GetMeasurementVector()[0]) !=
m_SelectedClassLabels.end() )
{
for (i = 0; i < numberOfClasses; i++)
{
discriminantScores[i] =
(this->GetMembershipFunction(i))->Evaluate(measurements);
}
classLabel = rule->Evaluate(discriminantScores);
output->AddInstance(classLabels[classLabel],
iter.GetInstanceIdentifier());
}
else
{
output->AddInstance(m_OtherClassLabel,
iter.GetInstanceIdentifier());
}
++iter;
++m_iter;
}
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|