File: itkSampleMeanShiftClusteringFilter.txx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (150 lines) | stat: -rw-r--r-- 4,599 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSampleMeanShiftClusteringFilter.txx,v $
  Language:  C++
  Date:      $Date: 2009-03-04 19:29:54 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSampleMeanShiftClusteringFilter_txx
#define __itkSampleMeanShiftClusteringFilter_txx

#include "vnl/vnl_math.h"

namespace itk { 
namespace Statistics {

template< class TSample >
SampleMeanShiftClusteringFilter< TSample >
::SampleMeanShiftClusteringFilter()
{
  m_Threshold = 0.5;
  m_MinimumClusterSize = 16;
}

template< class TSample >
SampleMeanShiftClusteringFilter< TSample >
::~SampleMeanShiftClusteringFilter()
{
}

template< class TSample >
void
SampleMeanShiftClusteringFilter< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "Threshold: " << m_Threshold << std::endl;
  os << indent << "Minimum cluster size: " << m_MinimumClusterSize
     << std::endl;
}

template< class TSample >
void
SampleMeanShiftClusteringFilter< TSample >
::GenerateData()
{
  const TSample* inputSample = this->GetInputSample();
  m_Output.clear();
  m_Output.resize( inputSample->Size(), 0 );
  int currentLabel = 1;
  unsigned long currentClusterSize;
  SearchResultVectorType queryPoints;
  SearchResultVectorType queryPoints2;
  MeasurementVectorType tempQueryPoint;
  MeasurementVectorType tempPreviousQueryPoint;
  bool searchLoopBegin;
  SearchResultVectorType tempSearchResult;
  SearchResultVectorType* currentQueryPoints;
  SearchResultVectorType* nextQueryPoints;
  SearchResultVectorType* tempQueryPoints;
  typename SearchResultVectorType::iterator cp_iter;
  typename SearchResultVectorType::iterator cp_end; 
  typename SearchResultVectorType::iterator sr_iter;
  typename SearchResultVectorType::iterator sr_end;
  typename TSample::ConstIterator iter = inputSample->Begin();
  typename TSample::ConstIterator end = inputSample->End();

  while ( iter != end )
    {
    if ( m_Output[iter.GetInstanceIdentifier()] == 0 )
      {
      currentClusterSize = 0;
      currentQueryPoints = &queryPoints;
      nextQueryPoints = &queryPoints2;
      currentQueryPoints->clear();
      nextQueryPoints->clear();
      currentQueryPoints->push_back( iter.GetInstanceIdentifier() );
      searchLoopBegin = true;
      tempPreviousQueryPoint.Fill(0);
      while ( currentQueryPoints->size() > 0 )
        {
        cp_iter = currentQueryPoints->begin();
        cp_end = currentQueryPoints->end();
        while ( cp_iter != cp_end )
          {
          tempQueryPoint = inputSample->GetMeasurementVector( ( *cp_iter) );

          if ( !searchLoopBegin && tempQueryPoint == tempPreviousQueryPoint )
            {
            break;
            }

          tempSearchResult.clear();
          inputSample->Search( tempQueryPoint, m_Threshold,
                               tempSearchResult );

          tempPreviousQueryPoint = tempQueryPoint;
          if ( searchLoopBegin )
            {
            searchLoopBegin = false;
            }

          sr_iter = tempSearchResult.begin();
          sr_end = tempSearchResult.end();
          while ( sr_iter != sr_end )
            {
            if ( m_Output[*sr_iter] == 0 ) 
              {
              m_Output[*sr_iter] = currentLabel;
              nextQueryPoints->push_back( *sr_iter );
              ++currentClusterSize;
              }
            ++sr_iter;
            } // end of while sr_iter
          ++cp_iter;
          } // end of cp_iter
        tempQueryPoints = currentQueryPoints;
        currentQueryPoints = nextQueryPoints;
        nextQueryPoints = tempQueryPoints;
        nextQueryPoints->clear();
        } // end of while (cp->size())

      if ( currentClusterSize < m_MinimumClusterSize )
        {
        }
      else
        {
        itkDebugMacro(<< "cluster label = " << currentLabel
                      << " cluster size = " << currentClusterSize);
        ++currentLabel;
        }
      } // end of if
    ++iter;
    }
}


} // end of namespace Statistics 
} // end of namespace itk

#endif