1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkScalarImageTextureCalculator.txx,v $
Language: C++
Date: $Date: 2009-03-04 19:29:54 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkScalarImageTextureCalculator_txx
#define __itkScalarImageTextureCalculator_txx
#include "itkScalarImageTextureCalculator.h"
#include "itkNeighborhood.h"
#include "vnl/vnl_math.h"
namespace itk {
namespace Statistics {
template< class TImage, class THistogramFrequencyContainer >
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
ScalarImageTextureCalculator()
{
m_GLCMGenerator = GLCMGeneratorType::New();
m_FeatureMeans = FeatureValueVector::New();
m_FeatureStandardDeviations = FeatureValueVector::New();
// Set the requested features to the default value:
// {Energy, Entropy, InverseDifferenceMoment, Inertia, ClusterShade, ClusterProminence}
FeatureNameVectorPointer requestedFeatures = FeatureNameVector::New();
// can't directly set m_RequestedFeatures since it is const!
requestedFeatures->push_back(Energy);
requestedFeatures->push_back(Entropy);
requestedFeatures->push_back(InverseDifferenceMoment);
requestedFeatures->push_back(Inertia);
requestedFeatures->push_back(ClusterShade);
requestedFeatures->push_back(ClusterProminence);
this->SetRequestedFeatures(requestedFeatures);
// Set the offset directions to their defaults: half of all the possible
// directions 1 pixel away. (The other half is included by symmetry.)
// We use a neighborhood iterator to calculate the appropriate offsets.
typedef Neighborhood<ITK_TYPENAME ImageType::PixelType, ::itk::GetImageDimension<
ImageType >::ImageDimension > NeighborhoodType;
NeighborhoodType hood;
hood.SetRadius(1);
// select all "previous" neighbors that are face+edge+vertex
// connected to the current pixel. do not include the center pixel.
unsigned int centerIndex = hood.GetCenterNeighborhoodIndex();
OffsetType offset;
OffsetVectorPointer offsets = OffsetVector::New();
for (unsigned int d=0; d < centerIndex; d++)
{
offset = hood.GetOffset(d);
offsets->push_back(offset);
}
this->SetOffsets(offsets);
m_FastCalculations = false;
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
Compute(void)
{
if (m_FastCalculations)
{
this->FastCompute();
}
else
{
this->FullCompute();
}
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
FullCompute(void)
{
int numOffsets = m_Offsets->size();
int numFeatures = m_RequestedFeatures->size();
double **features;
features = new double *[numOffsets];
for (int i = 0; i < numOffsets; i++)
{
features[i] = new double [numFeatures];
}
// For each offset, calculate each feature
typename OffsetVector::ConstIterator offsetIt;
int offsetNum, featureNum;
for(offsetIt = m_Offsets->Begin(), offsetNum = 0;
offsetIt != m_Offsets->End(); offsetIt++, offsetNum++)
{
m_GLCMGenerator->SetOffset(offsetIt.Value());
m_GLCMGenerator->Compute();
typename GLCMCalculatorType::Pointer glcmCalc = GLCMCalculatorType::New();
glcmCalc->SetHistogram(m_GLCMGenerator->GetOutput());
glcmCalc->Compute();
typename FeatureNameVector::ConstIterator fnameIt;
for(fnameIt = m_RequestedFeatures->Begin(), featureNum = 0;
fnameIt != m_RequestedFeatures->End(); fnameIt++, featureNum++)
{
features[offsetNum][featureNum] = glcmCalc->GetFeature(fnameIt.Value());
}
}
// Now get the mean and deviaton of each feature across the offsets.
m_FeatureMeans->clear();
m_FeatureStandardDeviations->clear();
double *tempFeatureMeans = new double [numFeatures];
double *tempFeatureDevs = new double [numFeatures];
/*Compute incremental mean and SD, a la Knuth, "The Art of Computer
Programming, Volume 2: Seminumerical Algorithms", section 4.2.2.
Compute mean and standard deviation using the recurrence relation:
M(1) = x(1), M(k) = M(k-1) + (x(k) - M(k-1) ) / k
S(1) = 0, S(k) = S(k-1) + (x(k) - M(k-1)) * (x(k) - M(k))
for 2 <= k <= n, then
sigma = vcl_sqrt(S(n) / n) (or divide by n-1 for sample SD instead of
population SD).
*/
// Set up the initial conditions (k = 1)
for (featureNum = 0; featureNum < numFeatures; featureNum++)
{
tempFeatureMeans[featureNum] = features[0][featureNum];
tempFeatureDevs[featureNum] = 0;
}
// Run through the recurrence (k = 2 ... N)
for (offsetNum = 1; offsetNum < numOffsets; offsetNum++)
{
int k = offsetNum + 1;
for (featureNum = 0; featureNum < numFeatures; featureNum++)
{
double M_k_minus_1 = tempFeatureMeans[featureNum];
double S_k_minus_1 = tempFeatureDevs[featureNum];
double x_k = features[offsetNum][featureNum];
double M_k = M_k_minus_1 + (x_k - M_k_minus_1) / k;
double S_k = S_k_minus_1 + (x_k - M_k_minus_1) * (x_k - M_k);
tempFeatureMeans[featureNum] = M_k;
tempFeatureDevs[featureNum] = S_k;
}
}
for (featureNum = 0; featureNum < numFeatures; featureNum++)
{
tempFeatureDevs[featureNum] = vcl_sqrt(tempFeatureDevs[featureNum] / numOffsets);
m_FeatureMeans->push_back(tempFeatureMeans[featureNum]);
m_FeatureStandardDeviations->push_back(tempFeatureDevs[featureNum]);
}
delete [] tempFeatureMeans;
delete [] tempFeatureDevs;
for(int i=0; i < numOffsets; i++)
{
delete [] features[i];
}
delete[] features;
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
FastCompute(void)
{
// For each offset, calculate each feature
typename OffsetVector::ConstIterator offsetIt;
for(offsetIt = m_Offsets->Begin(); offsetIt != m_Offsets->End(); offsetIt++)
{
m_GLCMGenerator->SetOffset(offsetIt.Value());
}
m_GLCMGenerator->Compute();
typename GLCMCalculatorType::Pointer glcmCalc = GLCMCalculatorType::New();
glcmCalc->SetHistogram(m_GLCMGenerator->GetOutput());
glcmCalc->Compute();
m_FeatureMeans->clear();
m_FeatureStandardDeviations->clear();
typename FeatureNameVector::ConstIterator fnameIt;
for(fnameIt = m_RequestedFeatures->Begin();
fnameIt != m_RequestedFeatures->End(); fnameIt++)
{
m_FeatureMeans->push_back(glcmCalc->GetFeature(fnameIt.Value()));
m_FeatureStandardDeviations->push_back(0.0);
}
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
SetInput( const ImageType * inputImage )
{
itkDebugMacro("setting Input to " << inputImage);
m_GLCMGenerator->SetInput(inputImage);
this->Modified();
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
SetNumberOfBinsPerAxis( unsigned int numberOfBins )
{
itkDebugMacro("setting NumberOfBinsPerAxis to " << numberOfBins);
m_GLCMGenerator->SetNumberOfBinsPerAxis(numberOfBins);
this->Modified();
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
SetPixelValueMinMax( PixelType min, PixelType max )
{
itkDebugMacro("setting Min to " << min << "and Max to " << max);
m_GLCMGenerator->SetPixelValueMinMax(min, max);
this->Modified();
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
SetImageMask( const ImageType* imageMask)
{
itkDebugMacro("setting ImageMask to " << imageMask);
m_GLCMGenerator->SetImageMask(imageMask);
this->Modified();
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
SetInsidePixelValue(PixelType insidePixelValue)
{
itkDebugMacro("setting InsidePixelValue to " << insidePixelValue);
m_GLCMGenerator->SetInsidePixelValue(insidePixelValue);
this->Modified();
}
template< class TImage, class THistogramFrequencyContainer >
void
ScalarImageTextureCalculator< TImage, THistogramFrequencyContainer >::
PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|